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In this Phase [ study funded under the Small Business Innovation Research (SBIR) program,
statistical methods are developed using the predictive inference and entropy approach. Previous
recent research has derived eatropy as the natural measure of model approximation error from
the fundamental statistical principles of sufficiency and repeated sampling. In this study, the
areas of nonnested multiple comparison, multivariable time series analysis, adaptive time series
analysis of changing processes, and optimal small sample inference are investigated. Coastrained
maximum likelihood methods are developed for general noanested multiple comparison. For the

_ . asymptotic optimality of these methods, a condition on the Fisher information and Hessian
‘ matrices must be satisfied. Applying thess results to multivariste time series analysis, lower
" bounds are derived for the schievable accuracy of the estimated transfer function and spectral
matrices. Markov and canounical variate analysis (CVA) provids a means of numerically and sta-
tistically stable model fitting of multivariable time series, and thess methods provide s basis for
modeling and fitting time varying models of changing processes. are derived for the
optimal selection of data leagth for fitting siowly changing processes\qs well as for optimal selec-
tion of the data interval for detection of abrupt changes. Optimal sample methods for mul-
tivariate analysis are studied, and entropy methods are shown to provide i t improvemeats
in very small samples. Recommendations for Phase II research and deve t focus on the
adaptive and noaadaptive time series analysis procedures developed in this
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1. INTRODUCTION AND OVERVIEW

In this study, statistical methods are developed using predictive inference and eatropy. This
approach to statistical inference allows the trestment of several difficult statistical problems that
are not casily dealt with using traditional statistical methods. The particular statistical problems
addressed are

(] statistical model building involving the determination of parametric
model structure and order in the general case of multiple nonnested
alternatives,
[ ] time series modeling and forecasting involving the determination of
parametric model structure and order,
° adaptive time series analysis involving optimal methods for tracking
slow changes as well as for detecting abrupt changes or failures,
] small sample inference for multivariate distributions of the exponen-
tial family.
A number of issues in these topics are resolved naturally in the predictive inference and eatropy
setting. This report provides an overview of the progress of the Phase I research with detailed
technical papers included in the Appendices.

The recent interest in predictive distributions has come from several directions. Modern
developments appareatly begin with Jeffreys (1961, p.143) using a Bayesian approsch as has much
of the work following (Aitchison and Duasmore, 1975, preface and p39). The frequentist
viewpoint taken in this proposal has been stimulation by small sample problems (Murray, 1977,
1979), model order and structure determination probiems involving parametric models (Akaike,
1973, 1974,), and noanested multiple comparison problems (Larimore, 1977a, 1977b). Classical
methods are conceptually ill-suited or perform poorly in practice on such problems.

In the first Chapter, the approsch using predictive inference and entropy is described. The
basis of this approach is the derivation of entropy from the fundamental statistical principles of
sufficiency and repsated sampling in the context of the predictive inference setup as first
pressated in Larimore (1983a). This provides a sound theoretical foundation that was previously
lacking for the uss of entropy as the natural measure of the error in approximating a true future
deasity by an estimated predictive deasity based upon a pressat sample. The generality of this
eatropy measure allows comparison of satistical inference methods and the derivation of more
optimal inference procedures including
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) general inference methods such as parametric or nonparametric
methods

o exact evaluation of small sample procedures
° determination of model order or structure including the case of aon-
nested multiple comparison
() timsﬁumdyisincludingdeﬁni{iono!opdmdmmotﬁmc
varying processes and optimal detection of abrupt changes.
The generality of the predictive inference and eatropy approsch provides a basis for the generali-
zation of the preseat statistical and predictive inference methods to more general statistical prob-
lems.

In Chapter 2, the muitiple comparison of nonnested coastrained models is developed. Previ-
ous developments in multiple comparison have considered largely the nested case and assume that
the true model is contained in one of the models. In the present study, the case of constrained
maximum likelihood estimation is considered where the true model may not be contained in any
of the hypothesized models. The entropy measure provides a measure that allows the multiple
comparison problem to be viewed as a model approximation problem. In this more general con-
text the AIC procedure and generalizations of it are found to give asymptotically optimal predic-
tive inference procedures as measured by entropy. In the nested case, these procedures reduce to
the generalized likelihood ratio (GLR) test where the probability of rejection is a function of the
number of additional parameters in the alternative model not contained in the null hypothesis.

Time series analysis for stationary processes are considered in Chapter 4. The entropy meas-
ure provides a direct interpretation of the achievable accuracy in estimation of the power spec-
trum of a process. The eantropy is expressed as a squared relative error in estimating the spec-
trum. A generalization of this to multiple time series relates to principle components of the pro-
cess cross spectral matrix. A lower bound is determined such that the expected integral of the
squared relative error in spectral estimation is bounded by the number of estimated parameters
divided by twice the sampie size. An example of spectral estimation of an ARMA(4,3) proces
using spectral smoothing, Autoregressive modeling, and ARMA modeling shows the relative error
in thess estimation methods as dependent on the number of estimated parameters.

The topics of Markovian time series or state space models provides an approsch to time
series analysis that is readily computable and is easily extended to the case of changing processes.
The gsoeral state space model form is developed for Markov procemses. The canonical variate
analysis (CVA) method gives a direct and numerically stable computational method for determin-
ing stats spece models from observational data. The basic computational method is the general-
izsd singular valus decomposition (SVD). This method allows for the direct determination of the
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optimal model state order without the computationally intensive fitting of such models for the
evaluation of model fit. Once the model state order is determined, the state space model coeffi-
cients are simply computed by regression. This method generalizes easily to changing processes.

Adaptive time series methods are developed in Chapter 5. Primarily two types of changes
are considered, siowly varying changes and abrupt changes such as faults. Time varying Markov
processes are developed for such changing processes. Such processes provide the hypothesized
models for developing optimal tracking and detection of abrupt changes. An AIC based pro-
cedure is derived for the near optimal selection of the data length to use in model fitting. An
example is given of estimating the spectrum of a time varying processes that gives results near the
best previous solutions that are much more specialized. For abrupt change detection, a generali-
zation of the AIC procedure is required since the comparison of models fitted on differeat data
intervals is required which is not comsidered in the AIC formulation. Application of these
methods to simulated data of abrupt changes in an ARMA(4,3) processes including jumps in the
state, changes in the dynamics, and change in the variance of the excitation noise processes,
demoastrates that the procedure is sensitive to the detection of these very different types of
abrupt changes.

Smail sample multivariate inference procedures are described in Chapter 6. Since the
entropy measure gives an exact rational measure of the relative error of statistical inference pro-
cedures in small samples, it provides the bases for evaluation and development of small sample
inference methods. The historical approach to predictive inference involves the derivation of a
Bayesian predictive density. Although the method is Bayesian, in certain instances, the resultant
predictive density has certain invariance properties which lead to an optimal predictive density in
terms of the entropy measure. Another approach involves the direct solution for the optimal
invariant predictive density minimizing the eatropy measure. This optimal invariant procedure
leads to the same predictive density as the Bayesian predictive density using a noninformative
prior. These methods are compared for the multivariate normal distribution with the estimative
and best normal estimation procedures.
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2. APPROACH USING PREDICTIVE INFERENCE AND ENTROPY

The concepts of prediction and inference based on a set of data are very old and underlie
much of the scientific method. While the scientific method has been much discussed in philo-
sophical and qualitative terms, there has been very little in the literature from a basic statistical
viewpoint. The most extensive literature appears to be that associated with predictive densities or
predictive distributions (see Aitchison and Dunsmore, 1975). That approsch is to a large degree
Bayesian, although more recent treatments have developed 2 purely frequency sampling interpre-
tation in connection with use of entropy or Kullback information. The weak point in the fre-
quency approsch was the seemingly arbitrary use of the entropy measure of model approximation
error. More recently, however, the result of Larimore (1983a) bas established the fundamental
nature of the entropy measure based upon the statistical principles of sufficiency and repeated
sampling. The entropy measure has in addition a very natural interpretation as the log relative
odds in comparing two predictive densities in predicting the future sample. This gives a central
role to the entropy measure. The use of the entropy measure for decisions on model order and
structure was pioneered by Akaike (1973), and has been applied to many diverse statistical prob-
lems particularly in time series analysis. The justification given to the entropy measure in the
Akaike approach, however, has been largely heuristic. Because of the importance of the justifi-
cation of the entropy measure, the derivation and important concepts are outlined below in Sec-
tion 2.1. The use of entropy in comparing model structure selection procedures and for exact
small sample inference is discussed in Section 22. This approach to developing statistical pro-
cedures using predictive inference and entropy is then applied to the various topics in the follow-
ing chapters of the report.

2.1 Derivation of the Entrepy Measure of Approximatica

Predictive inference involves an experimeantal situation with two trials, an informative trial
with observations x and a predictive trial with observations y. The joint distribution of the two
trials is permitted any statistical dependence and is described by a joint probability density p(x .y).
The objective is to chooss a predictive distribution or deasity which, for each possible observed x,
is a probability density for the future outcome y. More precisely, consider s family p(y] x,a) of
predictive deasities where the index a specifies a particular predictive distribution. For a particu-
lar choics of a, p(y x,a) can be viewed as a coaditional probability density of y givea x for
predicting the distribution of the future observation y given an observed value of x. The predic-
tive inference problem involves selection of a criterion of fit for appraising the goodness of
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approximation to the true conditional probability deasity p(y| x) by the various predictive Jdensi-
ties p(y| x,a) specified by different a. The choice of such a criterion of fit is the primary topic of
this section. Negative entropy is derived as the natural measure of model approximation error for
any predictive distribution.

Cousider a family C = { p,(y] x), a€A} of predictive densities for approximating the true
density p.(y] x) of the predictive experiment y given the informative experiment x, where x and y
are vectors of dimension X and L respectively with true joint density p.(x,y). For the predictive
inference problem, a relative measure of goodness of approximation of p.(y| x) by the various
Pa(7| x) is desired. To this end, a repeated sampling experiment is considered in which joint ran-
dom samples (x,,y;) for i=1,.. N, are drawn repeatedly from a population with density p.(x.y).
The probability deasity of the joint predictive experiments Y =(y,, . . . ,yy) predicted by the a-th
model using X = (x,,....xy)is

N
Pu(Y|X) = I1 Palvil %) (2-1)
i=1
The probability density for ¥ can be considered as indexed by the pair (a,X). Statistical infer-
ence is considered about the true deasity p.(Y| X) of Y from among the family of probability den-
sities F = { p (Y| X), a€A} for a fixed X.

To consider the essential statistical information about the future sample Y given by the
predictive deasities p (Y| X), the sufficieacy of the likelihood function (Zacks, 1971, p. 61) is
used. From this principle, any inferences about the family F drawn on the basis of the sample
(7| X) follow from the observed values of the likelihood function p (Y| X) for a€A. The set of
likelihood ratios formed from pairs of these likelihoods is also a sufficient statistic (Cox and Hink-
ley, 1974, p. 20-1, see also p. 37-9 for a discussion of likelihood and sufficiency principles).

For inference about the densities p, and p,, all of the information is contained in the likeli-
hood ratio

N pyOnl x))

Ay =
N i=] PZ(’JI"I)

(22)

which has the intuitive interpretation of the relative odds of observing the data Y of the repeated
predictive trials from each of the distributions p, and p, given fixed informative data X. The
behavior of Ay as the aumber of repetitions becomes large is most easily seen by expressing it as

1 1 X Pl(yllxl)
Ne N ®12) N= N,% o‘Pz(Ycl‘c)
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P00l )
= [[p.(y.x) log o Ta) 4

= [fp.0lx) 108 ::g: :; dy p.(x) dx (2-3)

For a large number of repetitions, the odds will overwhelmingly favor p; or p, if the limit is
respectively strictly positive of strictly negative. The preference for one distribution over the
other as expressed by the likelihood ratio tends to grow exponentially with the number N of
repeated trials. If (2-3) is zero, then there will be no consistent preference with large numbers of
trials. Although for a finite aumber N of repetitions the likelihood ratio Ay depends upon the
particular samples (X,Y), asymptotically for large numbers of repetitions this dependence disap-
pears.

The direct pairwise comparison of predictive densities is not necessary if the Kullback-
Leibler conditional discrimination information (Kullback and Leibler, 1951; Kullback, 1959, p. 13)

Ly (e 2o = [p.0l x) lozf:‘g% dy (24)

of p, relative to p. is used which is a function of x. Note that the order of p, and p, are not
interchangeable with the latter playing the role of the truth.

The likelihood ratio (2-3) is expressed in terms of the Kullback information as
1
lim < log Ay = E{ly;(p+£) - Iy (pe 21} -5

where E, denotes expectation with respect to the true density p.(x). The criterion is thus deter-
mined as the negative entropy, or negentropy for brevity, defined as

RPep) = E 1y, (pepo) = [pe(x)dx fp.0lx) los:—.g:—:; dy (2-6)

the expected Kullback conditional information of the predictive density relative to the true condi-
tional density p.(y] ). In the repeated sampling experiment, the predictive density with the
smaller negeatropy relative to the true is ultimately preferred. The negentropy (2-6) thus orders
the goodness of a set of predictive deasities in approximating the true deasity. Also in comparing
any two predictive densities p; and p,, the respective difference has the intuitive interpretation as
the exponential rate at which the likelihood ratio diverges.

The above derivation of the eatropy measure of approximation of a predictive density uses
only the predictive inference setup in the repeated sampling context along with the principle of
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sufficiency. The sufficiency principle is one of the few generally accepted principles in statistical ':
inference. Various repeated sampling principles have been formulated, however the difficulty has =
been the choice of an evaluation criterion for comparing various sampling distributions. The b
entropy measure gives a criterion that is based upon basic statistical principles of inference. pr
A
o
o,
22 The Use of Entropy in Statistical Inference :“'
The eatropy measure of error in approximating a predictive deasity is very general and can 3 '
be applied in diverse modeling problems. In this section, some of the general model selection A
problems are described which include the nonnested multiple comparison problem, adaptive time "_::
e
series analysis of changing processes, and optimal small multivariate methods. o
L5
From the derivation of the entropy measure, it can be seen that the entropy measure has a ;:
number of very attractive features: ‘ ,
I~ t
° It applies to completely general modeling problems including non- N
parametric methods. '\
N
° It applies exactly to small samples. 5
° Only the fundamental statistical principles of sufficiency and by
repeated sampling are used.
° It applies to time correlated problems such as time series model ¥ )
ideatification and tracking. )
1Y
° Statistical inference can be fundamentally viewed as model approxi- :.,_
mation. N
rod
Note also that the predictive distribution can include an entire model structure- ”::
determination/parameter-estimation scheme by setting o
POl %) = p(y.8;,)(x)) 27 g
s
where for every x, k(x) is the k minimizing a mode! structure determination criterion. Thus for “
each a, p, can be regarded as a model fitting procedure including the choice k (x) of model struc- . .
ture. 'T,\
The negentropy measure is entirely applicable to exact small sample inference, system iden- \
tification, and detection of abrupt changes that include decisions among a multitude of _,.:
parametric model structures which may be nonnested. Several predictive inference problems g
have been considered in the literature. Previous work has used the negative entropy measure in N
much more restricted formulations where ;
¢,

Y ool n o €T Co i gla I Tt o
B Sﬁzﬁ%ﬂ;ﬁ.ui‘aﬁi‘ﬁrﬂ‘:}ﬂa_ R U N NPy,
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° the informative and predictive samples were assumed to be indepen-
dent (Aitchison and Dunsmore (1975), Akaike (1973)) which does
not include the time series forecasting problem

() the use of the negative entropy measure was considered as arbitrary
(Aitchison (1975), Murray 1979)) or justified only asymptotically for
large samples by heuristic arguments (Akaike (1973))

) the negative entropy measure was justified as a basis for comparing
distinct parametric model structures (Akaike (1973)), but not for
comparing model selection procedures which include choice of the
model structure (Larimore, 1983a)

° oanly the case of nested structures such as autoregressive models
were justified (Akaike (1973)) although there has been wide spread
application of it to the general nonnested case such as ARMA
models

° the previous literature on the use of information theory in statistical
inference justifies its use by arguments of information transmission,
a set of postulates supposed to be obvious, or by apalogy with
eatropy in statistical mechanics noane of which are coavincing from
the point of view of statistical inference (Kendall (1973), Hart
(1971)).

Thus the results of Larimore (1983a) give a solid theoretical justification for the use of the nega-

tive entropy measure in a general setting which makes possible the further general development
of predictive inference statistical methods.

For the parametric case, the very general considerations above simplify somewhat. For the
structure determination problems, an estimator of the form as in (2-7) associates a parameter esti-
mate &(x) with each possible value x of the sample space. To simplify the discussion in this sec-
tion, we can coasider that the informative experiment x (fit set) and predictive experiment y
(check set) are independeatly and ideatically distributed K-dimensional vectors. In Section 4, the
general dependent time series analysis case will be discumed. We predict the density of y by
p(y.8(x)) where p(y,0) is the parameterized class of densities for y. The negative entropy meas-
ure (2-6) reduces ia the parametric cass to that suggested by Akaike (1973) and is expressibie as

p(y.8.)

R =EK@p.d) =k, & - 2-8
Ped) = EK(p. S) [0 )mmo (28)

where ¢ desotes the true value of the parameter § and where E, denotes expectation with
respect to the isformative sampie : That the esumator #(z) may involve differeat model orders
or structures a8 is (2-7) is 80 conceprual dufficuity aithough it may complicate the evaluation of
the negentropy (2-8). The predicuve mmpie » (check sst) is never actually drawn, but we wish to
deviss decision procedures which woulid opumaily predict in terms of (2-8).
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The major statistical problem is to devise model-estimation/structure-determination schemes
which come close to minimizing the negentropy. A major step in that direction was made by
Akaike (1973) in proposing an extension of the maximum likelihood method to compare different
model orders ot structures. Suppose that 8,(x) is the maximum likelihood estimator for a given
restriction of the parameters 8 to a subspace H, that is defined for every x in the sample space.
Then we wish to partition the sample space into the disjoint subsets X, so that for x €X, the esti-
mator

85y = 8 (x) for xex, (29)

is used. Akaike (1973) shows that asymptotically for nested models, an unbiased estimate of the
negeatropy using the maximum likelihood model 8, (x) for the whole sample space x €X is givea
by the Akaike information criterion (AIC) defined by

AIC(k) = -2lnp(x 8, (x)) + 2K (k) (2-10)

where X (k) is the dimension of H,, i.c., the number of parameters estimated. The Minimum
AIC Estimate (MAICE) proposed by Akaike (1973,1974b) is to partition the sampie space so that
X, is the set of sample points for which

AIC (k) < AIC(j) for j =k (2-11)
Then the MAICE estimate is
Ouace(x) = 8 (x) for xex, (2-12)

50 that on the set X,, 8 ucg(x) is the maximum likelihood estimate &;(x) corresponding to the
model structure k with minimum AIC.

For autoregressive models, Shibata (1981a) has stucdied che MAICE and other asymptotically
equivalent procedures for model-estimation/order-determination. He adopted a spectral measure
of accuracy thst is asymptotically equivalent to the negentropy. He showed that asymptotically
for large sample, MAICE minimizes the negentropy measure of accuracy (2-8), which will be
called entropy officiency. Hence MAICE is asymptotically an optimal procedure for choosing
autoregressive models. Shibata (1981b) also shows MAICE as asymptotically optimal for regres-
sion problems which iavolve noanested multiple comparisons. Other procedures for model order
determination have been proposed (Bhansali and Downham, 1977; Schwarz, 1978) which
emphasize the choice of true model order asymptotically for large samples, which is called order
consistency. In most real problems the true order is infinite, and even if such a fiction were to
exist, a predictive criterion is much more intuitive in most applications. Shibata (1983) has shown
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that order consistency and entropy efficiency are mutually exclusive so that a choice is required
as to which of these criteria is most important. In particular, Shabata has shown that an order
coasisteat procedure cannot be entropy efficient, and that an entropy efficient procedure will not
be order coasistent.

Turing oow to a different general problem, that of exact small sample inference, predictive
inference and entropy provides a new approach to the problem. Past approaches to the small
samg.- \ference problem have involved a number of ad hoc procedures. The entropy measure
provides a sound fundamental measure of the approximation error in predicting the density of the
future experiment. One of the past approaches has involved the estimative method where the
predictive density is restricted to lie in the class of densities assumed to contain the true. Recent
results have shown that the use of more general predictive densities can give more optimal results
as measured in terms of the entropy measure of model approximation error (Murray, 1979, 1977;
Aitchison, 1975). The optimal predictive density has been derived in the class of invariant densi-
ties minimizing the entropy measure. This was derived before the justification of the entropy
measure based upon the sufficiency principle. As shown in Chapter 6, this more general and
optimal predictive density can be considerably better as measured by the entropy.

In time series analysis, the advantage of the approach using predictive inference and entropy
is that it provides a sound theoretical framework in terms of model approximation for the direct
comparison of very general time series analysis models including:

° Consideration of many complex hypotheses
o Comparison of nonnested hypotheses
° Comparison of dynamic models of different dynamic (state) orders

° Consideration of models fitted over different data sets for detecting
abrupt changes

o Counsideration of different adaptation rates for doing optimal model
tracking
The comparison of such diverse models is inherent in adaptive time series analysis and abrupt
change det'ection, and previous investigations have not had available such a sound and general
framework for solving these difficult problems.
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3. CONSTRAINED NONNESTED MULTIPLE COMPARISON OF MODELS Y

',

&

In this chapter, the general problem of nonnested multiple comparison is considered. In -
order to develop a general theory, consideration is restricted to comparing models that are the N
result of constrained maximum likelihood estimation. The objective of the discussion is to gen- .
eralizs the currently available procedures for nonnested multiple comparison in the coastrained %

maximum likelihood coantext. Y

The approach is to view the fitting of each alternative parametric model form as an approxi- 2
mation procedure, which includes the notion that the true model is in general not contained in ;‘é
the class of parametric models counsidered in the model fitting. This is a departure from previous "
approaches that involve primarily asymptotic arguments where the parametric models approsch -
the true model as the sample size becomes large. Such an asymptotic argument begs the question \

of model approximation since asymptotically there is no error in the approximation. It is very 3
important in practice to determine the exteat to which the asymptotic approximations are accu- 32
rate in moderate or small samples.

Another area of weakness in available approaches is the assumption of nesting in comparing 3
models using entropy methods. The derivations of Akaike involve the assumption of nested '
models which cousiderably restricts the applications of the methods. In practice, the AIC cri-

terion has been applied in a much wider context than the comparison of nested models.

The results of this chapter will provide the basis of much more general decision procedures }"
for adaptive time series analysis. In these problems, the comparison of different models based 2y
v
upon different intervals of data are compared to determine if an abrupt change has occurred. y
Previous entropy methods have only compared different models for a given interval of data.
N
3.1 Constrained Maximem Likelihood Estimation o
[N
The first result to be discussed is the generalization of the usual maximum likelihood theory "
to the coustrained cass. The regular case is considered where the log likelihood function is
expandable in a Taylor series (Cox and Hinkley, 1974, p. 281). These conditions permit the inter- o
changs of expectation and differentiation. -«.
(N
Following the notation of Lasimore (1986d, contained in Appendix A), let /(x,8) denote the 'y
log likelibood function of the informative sample x coasidered as a function of the parameters 6. oy,
Denots by £ the expectation with respect to the true density p(x,8) with true parameter 8. The -~
negative entropy measure is used as the measure of approximation to the true density by an £
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approximating deasity p(x,0*) with parameter value 6" from the subspace ©, of parameters. The
projection & of & onto the subspace O, is defined as the parameter value ¢ minimizing

R,(8,6") = El(x,0) - El(x,8*) (3-1)
%0 that the projection & satisfies the condition
El'z &) =0, (3-2)

where ° denotes the derivative with respect to ¢*. The minimum is unique if and only if the Hes-
sian D} given by D} = El"(z,#) is positive definite. Thus for a constrained class of models, the
projection of the true parameter value defines the best approximation to the true deasity in the
class of approximating densities.

Consider now the constrained maximum likelihood estimate & in the subspsce of parame-
ters @, satisfying the likelihood equation

I'(x,8*) =0 (33)

Then under the regularity conditions, we have for a positive definite Hessian D} and asymptodi-
cally for large informative sample x that

e & is an unbiased estimator of &*

(] the estimation error covariance matrix is

E@-&# )-8 = ON'EUT (= .8 (=8 D! (34)
For the uacoastrained case, the middle term is the Fisher information matrix and is equal to
minus the Hessian D2, but in the general constrained case this is not true.
Now counsider the likelihood /()] x,0) of the predictive experiment y conditioned on the

informativé experiment x. From the above results, the negentropy can be easily determined.
Expanding the log likelihood to second order and taking expectation gives the negative entropy as

.o 1,2 = ..

Ry 08) = -1 &-&ll 5, +Ry,(68) (35)

which bolds asymptotically for large informative sample. Note that the second term is exact with

0O approximation in small samples. The first term is an approximation involving the variation of

the maximum likelihood estimate locally about the projection @. Thus the bias part of the error
in constraining the model is captured exactly.
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32 Uabiased Estimation of Entrepy

In the previous discussion of entropy, the measure is considered as a measure of approxima-
tion error betveen the trus and approximating deasity. In practice, the true density is unknown
and it is desired to obtain an estimate of the negative entropy based upon the observed informa-
tive sample. To simplify the discussion, the case of x and y independent is considered. An accu-
rate estimats of the negative entropy was first obtained by Akaike using the log likelihood as an
estimate of the eatropy with a correction for the bias. The Akaike information criterion (AIC)

AIC(k) = -2logp(x,8*(x)) + 2K (k) (3-6)

was derived as an unbiased estimate of the entropy where K(k) is the aumber of parameters
adjusted in fitting the maximum likelihood estimates. The second term adjusts for the bias in
estimating the entropy using the informative sample and adjusting the parameters in fitting.
Akaike (1973) originally derived the AIC as an unbiased estimate for the relative comparison of
the prediction error in comparing two nested models. The nesting is also important in that
derivation because the models are not only nested but asymptotically approach the true model.

In the more general case of constrained maximum likelihood estimation, s difficulty occurs
in the estimation of the negeatropy. Consider as above the case of x and y independent and
identically distributed. As derived in Appendix A, the expected log likelihood difference of the
informative sample is

E{i(x,0) - 1(x,8")]) = - (DD'EU T (2,8 N (x,8)} + R, (6,6") 37

In the uncoastrained case, asymptotically for large informative sample the trace term is equal to
the number of parameters estimated. Unfortunately in the general coastrained case, the Hessian
is not equal to the Fisher information matrix. The trace then depends upon the expectation with
respect to the true unknown deasity of the first and second derivatives of the log likelihood fuac-
tion at the projection . This cannot be computed in general since the true parameter is unk-
nown.

In cases where the Hessian and Fisher information are equal so that the trace is equal to the
number of parameters, then two different parametric model structures, say ¢* and ¢ can be com-
pared using (3-7) as

E(l(x,8)-((x.&)] = ~ dim(0*) - dim(¢/) + R(8.8/) - R(8,") (3-8)

which is equivalent to the AIC. The denvation for constrained maximum likelihood estimates
makes clear some of the assumptions ua previous entropy methods. The major difficulty is caused
by the variation of the Fisher informauon or Hesmian as the parameter values change. In the
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derivation above, the issue of nesting does not arise.

3.3 Nested Tuts

In the cass of nested tests, the MAICE criterion reduces to the usual geaeralized likelihood
ratio (GLR) test. The threshold and resulting probability of rejecting the null hypothesis, i.e. the
' sizs of the test, depends upoa the number of additional parameters in the more general model.

In comparing two hypotheses H, and H,, the AIC criterion is to choose according to the
sign of the quantity

AIC(H) - AIC(H,) = -20g2EE) + 210y - k(1) (39)
p(z.8)

The AIC criterion in the nested case is equivalent to the decision rule
choose H if -2logh < 2{K(1) - K(0))
choose H , if -2logh = 2{Kk(1) - X(0)) (3-10)

where the generalized likelihood ratio \ is defined by

p(x 8"

A= - 3-11
p(x.8) -
The threshold 2[X (1) - X (0)] is precisely twice the aumber of additional parameters under the

hypothesis H ,.

In the cass of a normal class of deasities, the size q of the test is easily determined since the
GLR statistic A is chi-squared oa X (1) - K(0) degrees of freedom under the null hypothesis H .
Thus a is given as the solution of the relationship

"‘? LY

- >
<Lod

X, =2a 3-12)

were » is the number of additional parameters and X2, is the a probability point of the cumula-

tive chi-squared distribution on » degrees of freedom. Solving for a as a function of » gives the :
size of the test as a function of the aumber » of additional parameters as shown in Table 1. Note :
that the traditional a levels of 0.10, 0.0S, 0.01, 0.00S and 0.001 correspound respectively to about 4, ':‘

3

8, 16, 20, and 30 additional perameters. It has been known for a long time that in composite tests
or repeated applications of simple additions of a single variable that the significance level is con-
siderably reduced such as in sep-wise regremion. The entropy approach makes explicit the
changs in the sizs a of the test with the number of additional estimated parametsrs.
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Number s of
Additional
Parameters

1 2 3 4 S 8 1 16 20 30

p——————s—

Probability a of
Rejecting Null
_ Hypothesis

0.167 0.144 0.115 0094 0080 0.043 0024 0010 000S 0.0008

Table 1. Dependeacs of Significance Level a on the Number a of Additional Parameters




4. TIME SERIES ANALYSIS USING ENTROPY METHODS

Methods of predictive inference and entropy offer a number of advantages in the analysis of
time series aot available in other methods. In this chapter the basic time series analysis methods
are described, while in the following cbapter adaptive methods for time series analysis are
developed using predictive inference and entropy. First the topic of the achievable accuracy of
spectral analysis is addremsed by relating the entropy measure directly to a relative squared error
in estimating the power spectrum. Following this is a discussion of the Markovian representation
of time series in terms of state space models which will be very useful in representing time vary-
ing models of time series. The canonical variate analysis approsch to time series is then described
which forms the basis of the adaptive time series analysis methods developed in the following
chapter.

4.1 Achisvable Spectral Accuracy

In this section, the informative and predictive sampies will be denoted by » and v respec-
tively to allow for the traditional use of x and y for random processes. Consider the problem of
identifying a model for a pair (x,,y,) of multiple stationary time series where x, and y, are exo-

genous and endogenous time series respectively. Consider linear stochastic models in the form of
a linear difference equation

%"Q|+ﬁih0'ﬂﬂm’=%'+ﬂ 4-1)
=0

where A(s;0) is a causal linear system giving the respoase in y, to the past exogenous inputs r,,
and where ¢, is white noise. Suppose that the probebility deasity of the process is parameterized
by 0. The exogenous variable x, will be considered as exactly observed, and the problem of
modeling y, conditional on x, is considered so that prediction of y, from x, based upon such a

mode!l is the principls problem. This also includes the problem of no exogenous variable 30 that
oaly y, is cbesrved.

We wish to investigate the achievable accuracy in estimating a model for the proces. In
particular, the eatropy measure will bs developed to obtain the relationship between the aumber
of parametsrs estimated in the mode! and the relative squared error in estimating the powsr spec-
trum. Aa example illustrates the effect on the spectral estimation error due to the particular
class of parametric models used in the identification and the sumber of parameters estimated.
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The predictive infereace setup of Chapter 2 is considered where the primary interest is in
the asymptotic behavior with large sample size of both the informative and predictive samples.
Cousider an observed informative sample u” =(x] 37, ... .xJy7) of size N used to estimate the
process model, and similarly consider a conceptual predictive sample v of size M used to evaluate
the accuracy of the estimated model. The predictive sampie is assumed to be identically distri-
buted but indepeadent of the informative sample. Counsider the problem of infereace on the
parametric class {p(v,0),0€0} of models with probsbility densities p(v,0) based upon the informa-
tive sampie u. Consider the conceptual repeated sampling experiment where on each trial the
samples & and v are each drawn independeatly from the process S(w,8) with & assumed to be the
true parameter value. An estimative model p=p(v,8(u)) is chosen for the density of v by some
parameter estimation scheme #(x) . For & stationary process, the negative eatropy (2-6) is linear in
the predictive sample size A, 30 it is more useful to consider the per sample negeatropy. To this
end, define the per sample negemtropy denoted I(p. ). As derived in Appeadix B, the I-
divergsace is given asymptotically by
p(v,0.)
p(v.8(x))

15 $) = lim—cE, [ p(v.0.) log dv

= 4 E. [riS NS (o) - Sy (@) 52

+ 3 B [t (@) - A@Pa (ol @) - @152 *2)

where E, denotes expectation relative to the informative sample u.

In the multiple time series case, the spectral measure (4-2) has an intuitive interpretation in
terms of principal componeats of the power spectrum in the frequency domain. Principle com-
poneat represeatations of the spectral matrices 5 (w) and S,,(w) have the form

J(w) Sgg(@) /" (w) = D(w) , L(w) Sy(w) L’ (w) = E(w) (43)

where J(w) and L(w) given as a function of frequency w are unitary matrix transformations 0
J(w) " (w)=f =L (w)L."(w) which diagonalize S, (w) and S, (w) respectively and where D(w) and
E(w) are diagonal matricies. Filtering x(s) with transfer function L(w) gives the principal com-
ponent process x(s) which is expressed in the frequency domain as X (w)=L(w)X(w) , and which
has the diagonal spectral matrix £ (w), and similarly for q(z).

The spectral measure (4-2) is shown in Appendix B to be
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1s] Dy(w) - Dy(w) jpde | By(e) ?
165H=1 .{ Byw = w2 }.;,!.D.(-)o,,(«) 4u :
D(w)y de :
+3 _J:‘};,l Gyl - Gyl 55 2w (44)

The first sum on the right hand side is the integrated squared relative error of the estimated cos-
pectra of the principal components, while the second term is the integrated squared coherency of
the estimated spectrum D(w) which would be zero if D(w)=D(w) . Thus the measure (4-2) has a
clear interpretation in the multivariate case when the true spectrum D(w) is diagonal but where
the approximating spectrum D(w) is permitted arbitrary coherency among components. The third
term in the spectral measure (4-4) is asymptotically equivalent to replacing S, (w) by S, (w). This
term is invariant to the unitary transformations /(w) and L () where G(w)=/ () (w)L."(w) is the
transfer fuactica H (w) expressed in the coordinate frame of the principal componeat series x(z)
and y(s). The squared magnitude error | G,,(w) - G,,(w)| ? in the ij element of the transfer func-
tion is weighted by the input signal to output noise ratio D(w),/E (w),, for the pair (i ).

The spectral measure of accuracy can be bounded in terms of the number of parameters
estimated. Suppoes first for simplicity that the parametric class of models contains the true pro-
cems and that k parameters are estimated. Then by Appendix B using the Cramer-Rao lower
bound, the per sample negeatropy is bounded by

. 1 . 2 1 - k '
E I(SS)~E, a—(o-o)fr(o-o)z o F IF = N 4-5)

with equality achieved asymptotically for large informative sample N. This implies the bound on
the achievable accuracy in spectral estimation given by

= 53k [risdedn@ - Sw@P S :

+ % E, [riS,'H (@) - H(@)S o (wlH (w) - H (")1";_: “wo

In the more general case where the order is infinite and the MAICE procedure for choosing :
model order & is used, then Shibata (1983) has shown the following result. For each informative !
sample size N there is an optimal order t° (V) which minimizes the tradeoff between variability '
and bias in the entropy measure :
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Thea asympeotically for large informative sample N, the negative entropy of the MAICE model
selection procedure is exactly that of the model selection procedure using a fixed number of
parameters equal to the optimal order £°. Thus even in the case of using an entropy efficient
model selection procedure where the true model order is infinite, the achievable accuracy of
spectral estimation (4-6) can be bounded by the function (4-7) of the sample size N with k =k°,

To illustrate the use of the lower bound on the achievable accuracy, consider the ARMA
(4,3) proces

Y, =13136y,_ ;- 14401y, , + 1.0919 y,_y - 083527 y,_,
+ w, +0.17921 w,_; + 0.82020 w,_; + 026764 w,_, (4-8)

with the ndise variance of w as Q = 1.7258x1072. This process was analyzed by Gersch and Sharp
(1973) and Akaike (1974b) to show the increased accuracy of ARMA models over AR models.
For a sample size of 800, the optimal order was found to correspond to k° = 18 for fitting an AR
model to the data. Akaike (1974b) fitted several models to simulated data using AR, ARMA,
and Hanning window methods. Figure 1 shows the variability term of the spectral error as a
function of frequency for the various model fitting procedures. Since the optimal order was used
for the AR model, the bias is also included. The ARMA model has no bias sincs the full order is
chosen with high probability. On the other hand, the Hanning window has significant bias since a
fixed bandwidth is used to spectrally smooth the data at all frequencies, and this bandwidth is not
sufficient to estimate the sharp peak without bias. Use of a wider bandwidth would increase the
already large error at all the other frequeancies. The AR and ARMA methods are clearly adap-
tive in that the methods have a greater bandwidth to accommodate the rapid changes (large
second derivative or curvature) near the peaks and troughs but lower bandwidth in regions with
low curvature. The greater parametric efficiency of the ARMA method is clearly depicted in
these regions of low curvature. Repeated simulation of the time series data from the ARMA(4,3)
model and the maximum likelibood estimation of ARMA models with MAICE confirms that the
lower bound indeed gives an accurate description of the spectral estimation error in practice (Lar-
imore, Mahmood, and Mehra, 1984). Independent methods have been developed for obtaining
simultaneous confidence bands on spectral estimates (Larimore, 1986¢c). Such confidence bands
are proportional to the integrand of the spectral measure of accuracy so that the integrand gives
an accurate measure of spectral error at each frequency as well.
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4.2 Markoviaa Models of Time Series

In this section Markovian or state space models of time series are reviewed. Such models
have not been widely used in time series analysis, although there is wide spread use of such
models in filtering and prediction with numerous applications in engineering. State space models
have a aumber of advantages in time series analysis that are attractive for automatic implementa-
tion on microprocessors using the canonical variste analysis method discussed in the next section.
Such procedures allow the automatic selection of model state order using entropy methods and
lend themselves to adaptive methods for time varying processes discussed in the next Chapter.

The starting point of any approach is the joint probability distribution of the past and future
observatioas p(f, »,,0) where p, are the past inputs 4, and outputs y, up to time ¢ and f, are the

outputs y, in the future at time ¢ defined by
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pr=( ol ofwl)  fT=0Mole, ) (49)

and 0 is a vector of parameters indexing the model. A fundamental property of a Markov process
of finite state order is the existence of a finite dimensional state x, which is a linear function

x, =Cp, (410)

of the past p,. The state x, has the property that the distribution of the future f, conditioned on
the past p, is identical to that of the future f, conditioned on the finite dimensional state x, so

P(f:l p,,8) = P(fll x,,0) (411)

Thus, only a finite amount of information from the past is relevant to the future evolution of the

process. 3
A stationary Markov process of some particular state order can be represented by a vector

difference equation with the general form (Lindquist and Pavon, 1981)

T = Px, + Guy +w, 412)
Y, =Hx, + Au, + Bw, +v, (4-13)

where u is an input vector process, y is the output vector, x is the state vector, and w and v are
white noise processes that are independent with covariance matrices Q and R respectively. The
matrices ©, A, 8, G, and H determine the dynamics of the process and correlational characteris-
tics of the disturbances. The various matrices are considered as functions of the parameters
specifying the process. The white noise processes model the covariance structure of the error in
predicting y from u.

For time series analysis and system identification, the parameterization of the model is an -
important issue. The elements of all of the matrices of the state space model (4-12) and (4-13) :
and noise covariances are not independent parameters of the model. In fact for each distinct pro-
bability distribution there is an equivalence class of models of the form (4-12) and (4-13) with the
same distribution. It can be shown (Candy, Bullock, and Warren, 1979) that the number of
independent parameters is

K(k)=2kn +n(n+1) 2+km +nm (4-14)

where k, n, and m are the vector dimeasions of the state x,, outputs y,, and inputs u, respectively.
If there is no instantaneous feedforward so A =0, then the term am is deleted, while if there is no
input 30 A =G =0 the terms km +am are deleted. 1
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The state space parameterization (4-12) and (4-13) is not unique, however in the next section
2 a well conditioned procedure for selecting a unique model for the equivalence class will be
by described. For an individual state space model there exists a corresponding ARMA model and
" visa versa. However the two classes are not equivalent as classes. In general there is no ARMA
N class of models equivalent of a particular state space class. The ARMA class has one major diffi-
culty - there is no global parameterization of the state space models of a given order. The diffi-
culty is in the ARMA representation which becomes singular at certain models such as one
involving the cancellation of a pole and a zero. This causes great difficulty in numerical methods
in attempting to automatically identify higher order models which may involve such cancellations
s of poles and zeros.

D

K The major advantage of the state space models is the availability of efficient and numeri-
o

& cally well conditioned procedures for model identification discussed in the aext section, and the

a2 explicit Markov structure allows for the the development of direct adaptation procedures
& developed in the next chapter.

S

\ 43 Canoaical Variate Analysis of Time Series

The canonical variate analysis method for identification of state space time series models is
described in this section. The methods for the determination of the state order and selection of
the state using concepts of canonical variate analysis are first discussed. The determination of the
state space model is then computed by simple regression. The computation involves primarily a
singular value decomposition of the sample covariance matrix of the process.

HYANAN

.

A generalization of the canouical variate analysis method has recently provided a completely
: general solution to the static reduced rank stochastic prediction problem which is well defined
statistically and computationally even when some or all of the various covariance matrices are
singular (Larimore, 1986b). All other previous methods in the statistical literature do not address
the general problem. This result is the foundation of the time series analysis methods using
W predictive inference and eatropy including the adaptive time series methods.
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The original development of the canomical correlation analysis method of mathematical
statistics was by Hotelling (1936; see also Anderson, 1958). The application of canonical variate
analysis to stochastic realization theory and system ideatification was doge in the pioneering work
of Akaike (1974a, 1975, 1976). This initial work has a number of limitations such as no system
inputs, 0o additive measurement noise, substantial computational burden involving numerous
SVDs, a heuristic set of decisions for choosing a basis for representation of the system, and a
agumber of approximations including computation of the AIC criterion for decision oo model
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order.

Some important generalizations and improvements in Akaike’s canonical correlation method
have recently been made by Larimore (1983b). These include generalization to systems with addi-
tive measurement noise and with inputs including feedback controls. A major departure of the
approach from previous work is the use of a single canonical variate analysis to optimally choose
k linear combinations of the past for prediction of the future. The very natural measure of qua-
dratically weighted prediction errors at possibly all future time steps is used. Formulated as such
a prediction problem, it is shown how a generalized canonical variate analysis gives the solution
explicitly. The interpretation of canonical variates as optimal predictors is central in motivating
interest in such a problem formulation and is scarcely found in the statistical literature (Larimore,
1986b). The optimal k-order predictors are not in general recursively computable, but the
optimal state-space structure for approximating them is expressed simply in terms of the canonical
variate analysis. The problem of finding an optimal Hankel norm reduced order model (Adam-
jan et al, 1971; Kung and Lin, 1981) is related to the canonical variate approach (Camuto and
Menga, 1982; Larimore, 1983b). The balanced realization method is a particular case of the gen-
eralized canonical variate analysis (Desai and Pal, 1984).

To more concisely discuss the canonical variate method, the results in Larimore (1983b,
1986b) are briefly reviewed. Consider the problem of choosing an optimal system or model of
specified order for use in predicting the future evolution of the process. As in Section 42, con-
sider the past p, of the inputs 4, and outputs y, before time ¢ and the future of the outputs y, at
time ¢ or later so

pr=C ol il Tal) o T =0T, ) (4-15)

We assume that the processes 4, and y, are jointly stationary and denote the covariance matrices
among f, and p, as 2,,, 3,,,and 3.

The major interest is in determining a specified number & of linear combinations of the past
p, which allow optimal prediction of the future f,. The set of & linear combinations of the past
p, are denoted as & kx1 vector m, and are considered as k-order memory of the past. The
optimal linear prediction /, of the future f,, which is a function of a reduced order memory m,,
is measured in terms of the prediction error

Ellf-fll g} =EW, -F Y5 ¢ -f 1) (4-16)

where E is the expectation operation and t denotes the pseudoinverse of a matrix. The optimal
prediction problem is to determine an optimal & -order memory
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m, = Jp, (4-17)

by choosing the & rows of J, such that the optimal linear predictor £,(m,) based on m, minimizes
the predictioa error.

As derived in Larimore (1986b), the solution to this problem in the completely general case
where the matrices X,,, I, and Z,, may be singular is given by the generalized singular value
decomponition as stated in the following theorem.

Thesrem 1. Counsider the problem of choosing & linear combinations m, = J,p, of p, for
predicting f, such that (4-16) is minimized where %,, and Z,, are possibly singular positive sem-
idefinite symmetric matrices with ranks m and a respectively. Thea the existence and uniqueness
of solutions are completely characterized by the (T,,,%,, )-generalized singular value decomposi-
tion which guarantees the existence of matrices /, L, and generalized singular values vy, - - -,
such that

IZ T =15, LE,LT =1 , JE,LT =Diag(y, 2.2 4,0, . ...0) (4-18)

The solution is given by choosing the rows of J, as the first k rows of J if the k-th singular value
satisfies v, > v, ,;. If there are r repeated singular values equal to v,, then there is an arbitrary
selection from among the corresponding singular vectors, i.e. rows of J. The minimum value is
min |f-fllG =Q-+ o+ Q- (4-19)
rek (1,2 0 =k 1
This resuit not only gives a complete characterization of the solutions in selecting optimal
predictors m, from the past p, for prediction of the future f,, but the reduction in prediction
error for all possible selections of order k is given simply in terms of the generalized singular
values. This is of great importance since it avoids having to do a considerable amount of compu-
tation to determine what selection of order is appropriate in a givea problem.
The generalissd CVA method allows the determination of the fit of the various state space
models and the selection of the best model state order before computation of the state space
models. Consider the general case of identifying a state space model: given the past of the

related random process u, and y,, we wish to model and predict the future of y, by a k-order
state-space structure of the form (4-12) and (4-13)

L RS o‘. +G“| W. ("20)

y, = Hz, +Au, +Bw,+v, (4-21)
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In the computational problem given finite data, the past and future of the process are taken to be
finits of leagth ¢ lags %0

pr =0l eyl T =01 o) («22)

Akaike (1976) proposed choosing the number d of lags by least squares autoregressive modeling
using recursive least squares algorithms and choosing the number of lags as that minimizing the
AIC criterion discussed below. This insures that a sufficient number of lags are used to capture
all of the satistically significant behavior in the data. This procedure is easily generalized to
include the case with inputs u,. The generalized SVD of Theorem 1 determines a transformation
J of the past that puts the state in a canouical form so that the memory m, = Jp, coatains the
states ordered in terms of their importance in modeling the process. The optimal memory for a
givea order & thea corresponds to selection of the first & states.

In order to decide on the model order to select, the Akaike information criterion (2-10) is
computed where the number of parameters is determined from (4-16). Ounce the optimal k-order
memory m, is determined, state-space 2quations of the form (4-12) and (4-13) for approximating
the process evolution are easily computed by a simple multiple regression procedure (Larimore,
1983b).

Since the CVA system identification procedure involves the state space model form, it has
the major advantage that the model is globally identifisble 30 that the method is statistically well
conditioned in coantrast to ARMA modeling methods (Gevers and Wertz, 1982). Furthermore,
sincs the computations are primarily a SVD, they are numerically stable and accurate with an
upper bound on the required computations (Golub, 1969). Thus the method is completely reliable.
It has been demonstrated as such in the time series analysis software Forecast Master that is com-
mercially sold by SSI. From the theory of the CVA method (Larimore, Mahmood and Mehra,
1984), it can be shown that there are no difficulties such as biased estimates caused by the pres-
ence of a correlated feedback signal. The CVA method was demonstrated in real time identifica-
tion and adaptive control of uastable acroelastic wing flutter on a scale model F-16 aircraft in the
NASA Langley Transonic Dynamics Wind Tunnel in February 1986.
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S. ADAPTIVE TIME SERIES ANALYSIS

The state space model identification methods are developed in this chapter for adaptive time
series analysis. The concepts of a changing Markov process are first discused along with con-
cepts of a piecewise coaustant model of the process that is constant over intervals of time. The
approach to adaptation to slow changes using predictive inference and entropy is described. This
leads to a model fitting criterion for choosing an optimal data interval that belances the decreas-
ing sampling variability with increasing sample size against the increasing missmodeling error due
to use of a constant model over an interval of data. In fitting models involving abrupt changes,
b the modsls fitted over various intervals are compared to determine if an abrupt change has
occurred. This involves the comparison of models determined from data on different data inter-
vals in predicting the error on a different interval. Several exampies are givea in using the pro-
cedure on changes involving the dynamics, noise excitation, measurement noiss, and other
changes.

Concepts of adaptive systems have been around since the 1950°s involving various senses of
adaptation. The present literature on the subject includes a number of methods such as recursive
computational schemes, exponential forgetting, lattice computational methods, etc., which have
certain "knobe’ that allow tuning of the algorithm to accommodate changes in the characteristics
of the actual processes. Reviews of these and related methods are contained in several receat
special issues of technical journals and books (Special Issue on Adaptive Control, Automatica,
Vol. 20, No. S, 198S; Special Issue on Linear Adaptive Filtering, [EEE Trans. on Information
Theory, Vol. 30, No. 2, 1984; Honig and Memerschmitt, 1984). While these methods do permit
some degree of adaptation to process changes, the methods of adaptation are ad hoc, and no
sound underlying statistical principle for adaptation is proposed or demoustrated. As might be
expected, these methods can work poorly on certain cases because of the lack of a sound statisti-
cal basis,

In perticular, the recursive prediction error and lattice methods are convenient due to their
recursive form and provide an estimate at every observation (Friedlander, 1982a, 1982b, 1983,
Ljng and Soderstrom, 1983). Also, the recursive algorithms can be used for adaptation by
exponential weighting of the past data (Welistead and Sanoff, 1981, Irving, 1979; Evans and Betz,
1982). But the rational for exponential weighting has not been given a sound fundameantal justifi-
cation, but is used largely due to its ease of use. The choice of the exponential weight has been
ad boc and susceptible to misinterpretation of changing noise variance levels as time varying
changes in the dynamics (Hagglund, 1983).
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Adapeation to abrupt changes has been largely discussed in the fault detection literature. A
comprehensive survey of fault detection methods is given by Willsky (1976). See also Mehra and
Peschon (1971), Willksy and Jones (1974), Willsky (1980), and Isermann (1984). These methods
have a number of short commings in detecting changes in dynamics, computational illcondition-
ing, and excessive computational burden.

The central computation of any adaptive algorithm involves the extension of methods for
identification of stationary time series. There are several difficulties with curreatly available
methods and software for the ideatification of system dynamics and noise characteristics. Current
methods include the self tuning regulator (STR) (Ljung, 1983; Astrom, 1973; Astrom et al, 1973,
1977), maximum likelihood estimation (MLE) (Mehra and Tyler, 1973; Larimore, 1981a), the
Box-Jeakins (BJ) method (Box and Jenkins, 1976), and a variety of heuristic approaches. The
current stats of the art in both MLE and BJ require that an analyst be involved in the procedure,
and the required number of computational iterations is not bounded. The STR has been applied
successfully to simple processes, but is not completely reliable for general processes particularly
when multi-input, multi-output systems are involved. In addition, the recursive prediction error
algorithm used in the STR requires a good initial estimate and so is not suitable for short data
where no apriori data is available. The heuristic approaches tend to be for special purposes and
are rather unreliable in general applications.

5.1 Moddis for Changiag Procemss
The problem of modeling changing processes involves primarily two types of changes
o changes that are slow compared to the data interval used for identif-
ication
° abrupt changes occurring infrequently compared to the data interval
used for identification.
If the changing process changes too rapidly or the abrupt changes occur too frequently relative to
the data interval required for sufficiently accurate identification, then it is not possible to
separate the actual system changes from the variability due to sampling.
Cousider a time varying Markov process where the conditional probability of the future
given the past depends upoa time ¢ %0

p(.lp, .04) =p(f,| x,,04) (5-1)

where the stats, defined as linear combinations of the past p,, varies with time as

5 =6y (5-2)
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In order to express the time evolution of the state of 8 Markov process in terms of a system of
state space equations of the form

X = Ox, + Gy +w, (5-3)
y =Hx, + Ay +Bw, +v, (54)

where the various matrices are time varying, it is necessary and sufficient that the coanditional dis-
tribution of the future f, conditioned on the state x, have the form

P(fnl x,,08) = P(fcl X1y 5ty ,0,8) (59)

This condition is essentially that the information in the state x, for predicting the future f, is con-
tained in the state x,_; delayed by one time step and the present inputs &, and outputs y,. This
condition is satisfied by most physical systems since the memory is stored as energy in physically
describable states. If the system changes abruptly, there may aiso be an abrupt change in the
input or a large noise innovation v, associated with a significant change in the state of the system.
Formulated in this way, it is apparent how the state space modeling methods are particularly use-
ful.

In any modeling method based upon a finite sample of data, only a finite aumber of param-
eters can be determined which are much fewer in number than the number of data. Of the vari-
ous posmsible methods for modeling, the simpiest and least presumptive is the piecewise constant
model which is constant over various intervals of data. Thus coasider the model of the form (5-3)
and (5-4) with piecewise constant parameters 9,

X4 = Oz, + Gy +w, (5-6)
Y =Hix, + Au, +Byw, +v, 57

The coefficisnt matrices ®,, G;, H,, A,, and B, are functions of the parameters 6, which are con-
stant over an interval of time T, and change from one time interval to another.

In the following sections, adaptive time series analysis methods are developed by considering
various hypotheses conceming siow and abrupt changes. The predictive infereace and entropy
methods provide a means of objectively comparing the vast multitude of such hypotheses eatailed
in the adaptive time series analysis problem.
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$2 Adaptation ®» Siow Variaticus

The problem of sdaptatios to slow varistions is primarily that of determining the length of
time interval to uss in the time varying model (5-6) and (5-7). Coasider the division of & section
of data into 2* subintsrvals of length 2’ samples were A and / are an integers. Then the various
hypothesss can bs coansidered such as H,: divide the interval into subintervals of leagth 2'. For
each subintsrval /,, for j=12,..2", suppose a state space model denoted M, is fitted using the
CVA method with AIC used to0 select the best mode! state order.

By succemsive application of the Markov property, the joint probability density of the obeer-
vatioas coaditioned oa the initial state is given by

o
logp(Y ), . .. ,Yz.l Y0.0,) = 3 logp (Y| Y,.1.9) (5-8)
J=1

where 8] = (8], . . . ,0]) is the parameter vector for the composite model consisting of all of the

models over the 2* subintervals. This gives the log likelihood as the sum of the conditional log

likelihoods on each subinterval. \
‘ Coasider the eatropy measure of the composite model 8,. Using the asymptotic approxima-

tion (3-5), the negentropy is

R(0.6) = % +R(6,8") = i[-‘il +R(6,¥)) (59)
J=1
where @ and ¢ are understood to denote the parametsrs constrained under the respective
bypotheses involving estimation of these models. Note that there is a tradeoff between the first
term which increases with finer subdivisions of the data and the second term which decreases as
the number of parameters is increased with finer subdivisions of the data. A minimum of the
negentropy defines the optimum subdivision of the data.

To estimats the negeatropy from the sample, the AIC is used. From the definition of AIC,
the AIC corresponding to (59) is givea by

AIC(Y,...Y o8 = iucor, ¥) (5-10)
J=1

The optimal data length is chosea as the A minimizing the above AIC.

As an illustration of this scheme. 1t was applied to a problem in the 1978 Workshop oa Spec-
tral Estimation (Gerhardt, 1978) in esumating the instantaneous frequency of a sine wave with
time varying frequency in the preseace of interfersnce sad random noise. The data were
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generated by the equation :
y(¢) = 1000 cos(a(s)) + 100 cos(b(e)) + n(s) (-11) :
where the signal compoaent has a time varying phase a(1) and the interference component has
phass b(¢) with the instantaneous frequencies given in Figure 2, ¢
200 ——— —~ E
4/ K snc%m .
190 > - - X
/ A N
\ N
180 / \ N

170 7// / \L \—
) | / Y\ {

" .
EYEEEEN
W

W'

5 . 5y ¥

/

L)

130 4—-1 . — .. o —] o R
Wm 018 24 032 VM0 Qe 05 0064 -> TIME N
(SECONDS) N

Figure 2. Instantaneous Frequency of Signal (solid) and Interference (dashed). !
5
and where the noiss is uaiformly distributed with -100<a(i)<100. The participaats were told to

estimats the instantaneous frequency of the signal which was observed in the presence of interfer- N
eace and noise. N
Table 2 gives the per sample AIC corresponding to the identified state space models for pe
each of the subintervals used which were of leagths 16, 32, 64, and 128 sampies. Also given are \
the per sampie AIC’s of the composite piecewise constant models for samples of 128. It is seen ;
that the subiaterval leagth producing the minimum average AIC for all of the data is 32 samples. e
This was thea uss as the optimal subinterval length for modeling the instantaneous frequency.
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ALL DATA

NUMBER OF POINTS IN DATA SUBINTERVAL

11.66 12.12 12.06
1237
12.64 1252
(1228) 1205 | (12.17) 1227 | (12.16) 1236 | (1236) 1236
12.02
(1203) 11.79 | (12.17) 12.06 | (12.40) 12.40
12.03
1225 1182
1139
1188 11.43 11.76
12.08
1155 1190
12.08
(11.74) 1066 | (11.70) 1165 | (11.78) 11.79 | (11.75) 11.7S
12.02 1167 12.04 12.17

ue
All Dats.

of Per Sampils AIC for Subintervals of the Sample, for the Average of 128 Points
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The esimate of the instantaneous frequency was chosen as the maximum of the spectrum
obtained from the CVA model fitted to the data. The estimated instantaneous frequency is given
in Table 3 along with the other three best solutions obtained by the other participants in the

workshop.

SAMPLE TRUE WILEY AND WEINER ADAPTIVE MAXIMUM

TIME CARMICHAEL ET AL CVA ENTROPY
2 141.47 141.47 141.69 142.13 1417
64 145.73 145.73 14588 145.13 1462
96 15237 15237 152.69 15222 152.6
128 160.73 160.73 160.71 16185 1603
160 170.00 170.00 17022 16930 1699
192 17927 17927 179.48 178.40 1799
24 187.63 187.63 187.72 188.06 1882
256 19427 19427 19433 19390 1948
288 198353 19853 19783 19722 1980
320 200.00 200.00 199.72 20094 2015
352 198.53 19853 19789 19835 1983
384 19427 19427 193.93 194.66 1940
416 187.63 187.63 187.09 18799 1874
448 17927 17927 17887 17982 1789
480 170.00 170.00 169.64 17021 1700
512 160.73 160.73 160.11 164.0

Table 3. Instantaneous Frequency Estimates.

The best solution by Carmichael and Wiley (1978) uses a special zero crossing method that is
applicable only to pure sine waves so that it will not generalize to more general spectra.

The adaptive CVA method did about as well as the best of the methods other than Wiley
and Carmichael, and much better than a lot of them. Note that the adaptive CVA approach
makes no assumptions about the form of the spectrum or the character of the time variation.
Also the adaptive CVA method is completely automatic, and in this example did not involve any
coasiderations by an analysis to determine the choice or modification of the computations. As
measured in terms of the estimated instantaneous frequency, the method did very well.

$3 Adsptatien te Abrupt Changes

The primary problem in adaptive time series analysis is determining if and when an abrupt
change has occurred. This problem reduces to compering two intervals of data and determining
if the same process model is a better description of the observations than a different model for
each interval of data. A complication of the problem is that the exact time is unknown and must
be determined from the dats. This wavolves the comparison of a multitude of hypotheses con-
cerning the pomsible time of occurrence of the abrupt change. In addition, the ability to detect
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the abrupt change depends upon the data length of the data intervals used. The best data leagth
for detection depends upon the type of abrupt change since some changes affect the observations
immediately and the effect decreases rapidly, while for other changes the effect on the observa-
tions takes some time before it is apparent. Thus the consideration of differeat data lengths
requires additional hypotheses to be considered and compared. The predictive inference and
entropy methods give a sound basis for the comparison of the multitude of nonnested hypotheses.

Coasider the problem of determining if there is a change in the the process between two dis-
joint data subintervals. The detection problem considered is where the process is modeled as a
slowly changing process using some efficient procedure such as given in the previous section. The
notation of the previous sections will be used with subscript 1 or 2 corresponding to the data
intervals Y, from the past slowly changing models and Y, from the new data that is to be com-
pared for detection of an abrupt change. The subscripted parameters 8, and 8, with or without
other superscripts, hats, or tildes will denote models based upon the corresponding data interval.
The data lengths of the two intervals Y, and Y, are generally different with the first data interval
determined by the slow adaptation method and with the second set usually much shorter and of
variable data length since the best data length for detection of abrupt changes is not known. For
any selection of the two intervals, we wish to determine if there has been a significant departure
in the process characteristics between the two data sets.

Ideally, the hypothesis (8,,8,) that the models are different over the two subintervals Y, and
Y, verses the hypothesis §, that the model is the same over the joint data set (¥,,Y,) would be
compared. But this would involve a considerable number of comparisons. To avoid such numerous
comparisons, consider the following approximation. Let data set Y, be chosen as the most recent
optimal length interval preceding Y, with corresponding model 8, which provides a near optimal
prior model Y,. To detect any abrupt changes in the system, consider the approximation of using
the model 8, as an approximation to the joint model &.

As discumed in Section 43, consideration can be limited to conditional models given the

past or equivalently the initial state at the beginning of the subinterval. Using such coaditional
models, the likelihood function r-duces to

P(Y1,Y2,8) = p(¥Y1,00p(Y1,8) (>-12)

The model on the first data set Y, is the same for both the above hypothesis and the change
bypothesis p(Y,,0,)p(Y;,6;). The eatropy measure is the difference of the above two log likeli-
hoods which involves oaly the likelihoods on the second subinterval Y, so that

R(8,,6,) = E(logp(¥;,0) - logp(Y1,8)] (5-13)
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If the system in fact had an abrupt change between Y, and Y, then since the data length 1, is
much longer thaa ¥,, most of the information in detecting the abrupt change is in the comparison
of the two models 6, and 6, on the data ¥,.

The problem is now to obtain an estimate of the eatropy measure (4-13) from the observa-
tional data. The observed log likelihood is used as an estimate of the eatropy as in (3-7). The bias
of this estimate of the entropy measure is

E[i(Y) - I(YD) = E[I(8) - I(Y )] - E[1(B) - 1(Y )
= —dim(6?) + R(8,Y)) - R(,Y ) (5-14)

where the term dim(8) in (3-8) is not present since the estimate &' is a function only of the sam-
ple Y, which is conditionaily independent of the sample Y,. Thus an unbiased estimate of the
difference of negentropies R(8,Y,) - R(8,Y,) of the two models is

1Y) - I(Yy) + dim(6?) (5-15)

This gives a test for the occurrence of an abrupt change between the two data intervals.
Depending upon the nature of the change and the process characteristics, the best detection
interval will vary. Some changes give most of the information about the change over a short
interval while others have a cumulative effect and require a long time interval to detect.

Consider as an example of the procedure for detecting abrupt changes the ARMA(43)
model (4-8). Three types of abrupt changes were simulated including an abrupt change in the
dynamics, in the state, and in the variance of the excitation noise w,. The results of the pro-
cedure for detecting abrupt changes for the case of no change and cases of a simulated abrupt
change in the dynamics, the excitation noise, and the state are shown in Tables 4, 5, 6, and 7
respectively. In each case, the entropy measure for detecting the abrupt change was computed
over various intervals of data of lengths 50, 100, and 200 samples and the abrupt change occurred
at the sample time 32S. In the case of no abrupt change, the entropy measure shown in Table 4
is on the average 05186 with a standard deviation of 0.016. As shown in Table 5, the largest
value of the entropy measure is in fact in the interval samples 300-350 containing the time of the
abrupt change in dynamics. The following interval of samples 350-400 also indicates a large value
of the eatropy measure. The initial large value in interval 300-350 is due to a transieat in the
state as it settles to a new steady state vanaace which is largely complete in interval 350-400. The
entropy measure then persists at this value in following intervals. The abrupt change in noise
variance shown in Table 6 has a different character. The negentropy changes abruptly in interval
300-350 and remains at that value in succeeding intervals. With an abrupt change in the state
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sAMPLE || NUMBER OF POINTS IN DATA SUBINTERVAL
TIMES || o 100 200
0.495
250 0.503
0513
300 0518
0.540
350 0534
0527
400

Table 4. Value of Per Sampie AIC for Subintervals of the Sample with No Abrupt Change.

SAMPLE || NUMBER OF POINTS IN DATA SUBINTERVAL
TIMES 50 100 200
>
0495
250 0.503
0513
300 10214
28220
350 19.924
11.628
400

Table 5. Value of Per Sampie AIC for Subintervals of the Sample with an Abrupt Change in
Dynamics at Sampie 325.

shown in Table 7, the departure is largely confined to the interval 300-350 although the transient
has not quite died out in the interval 350-400.

In all cases there was.no assumption as to the nature of the change, and the procedure
works as well on state jumps, changes in noise variances, or other changes. Note that the charac-
ter of abrupt change is quite different depending oa the type of abrupt change that occurs. The
best detection of abrupt changes can only be achieved by an adaptive procedure that considers
the muititude of data intervals and selects a near optimal data length for detection. These initial
resuits on the adaptive detection procedure demonstrate that it is very seasitive to a variety of
different abrupt changes in the model.
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SAMPLE NUMBER OF POINTS IN DATA SUBINTERVAL
TIMES 50 100 200
0.495
250 0.503
0513
300 0579
0.653
350 0.653
0.654
400

Table 6. Value of Per Sample AIC for Subintervals of the Sample with an Abrupt Change in Ex-
citation Noise Variance at Sample 325.

SAMPLE || NUMBER OF POINTS IN DATA SUBINTERVAL
TIMES || o 100 200
3
0.495
250 0.503
0513
| 300 21842
85.766
350 43.180
0.595
400

Table 7. Value of Per Sample AIC for Subintervals of the Sample with an Abrupt Change in
State at Sample 32S.
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6. SMALL SAMPLE MULTIVARIATE ANALYSIS

The approach to small sample inference in this Chapter is the use of the eatropy measure of
model approximation error to evaluate the performance of small sampie methods. This general
approach is based on the justification of entropy as the natural measure of model approximation
error as developed in Chapter 2. The historical Bayesian predictive inference approach plays a
major role in providing a computable predictive density which is subsequently shown to be
optimal in terms of the eatropy measure. This optimality is established by considering best invari-
ant predictive deasities. For the multivariate normal family, several predictive densities are com-
pared with the best invariant to show the large improvements that are possible in small samples.

6.1 Bayesian Predictive Inference

The historical approach to predictive inference involves the use of Bayesian concepts and
methods to determine the predictive deansity. Consider the parameterized class of probability den-
sity functions

F ={p(y x| 0)8¢6} (61)

defined on the joint sample space (X,Y). The predictive inference setup as in Section 2.1 is con-
sidered where a predictive density p,(y| x) is to be constructed as an approximation to the true
conditional deasity p(y| x,0) for the unknown parameter value 6. In the Bayesian approach, the
predictive density is constructed on the basis of an assumed prior deasity p(8) on the parameters 8
using Bayes rule.

From Bayes Theorem, the posterior density of the parameters is given by

- ESOES"I 0!
p(8 x) ) 6-2)

where the marginal density of x is
p(x) = [p(o)p (x| 0)d0 (6-3)

The Bayesian predictive density p,(y| x) is then given by computing the marginal density using
the posterior so

Poyl 1) = fp(y| x,00p(8] x)d® (64)

This approach is direct and simple although the assumption of a prior density p(6) on the
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parameters 0 is bothersome from both a theoretical and practical point of view.

A major objection to the Bayesian approsch is the use of an arbitrary prior density on the
parameters to express ignorance. If a uniform deasity is used for the prior on 8, thea a nonsingu-
lar transformation of the parameters to a new set ¢ = g(0) and use of a uniform prior on ¢ in
general produces a different posterior density. Thus there is a certain arbitrary choice of the
parameterization and resulting posterior. A way around this is the use of noninformasive prior
densities. Such densities give posterior deasities that are invariant to transformations of the
parameter space (Jeffreys, 1961, Box and Tiao, 1973). In situations where a noninformative prior
exists, it can be obtained in terms of the Fisher Information matrix.

In recent years, some intriguing connections between the bayesian predictive density and
concepts of entropy, frequentist methods, invariant methods, and noninformative priors have
been made. Still in a strictly Bayesian coatext, consider the negentropy measure (2-6) applied to
the Bayesian predictive deasity (64). Of course a Bayesian would take expectation of this meas-
ure with respect to the unknown parameters 8 which will be called the Bayes Risk. Using (6-4) and
interchanging the order of integration, the Bayes Risk between any two predictive densities
p101 x) and p,(7] x) s

P10l x)
P2yl x)

= [p()x [0l x) lo::;g: 3 dy ()

EEy iy P01 ) 20| x)) = [P (0)fp(x] ©)fp (¥ 2.8) log

dy

Now setting p,(y| x) = p,(y| x) guarantees that the Bayes Risk between p, and any predictive
density p, is nonnegative and zero if and ouly if p;(y| x) = p, (0| x).

Thus in a Bayesian context, the Bayesian predictive deasity is optimal in terms of the Bayes
Risk, i.c. the expected negative entropy measure with the expectation aiso taken over the param-
eters 0. As was noted by Aitchison in the original derivation of this result for the case of x and y
independent, there are a number of interesting cases where the negative entropy measure, i.c. the
Bayes Risk excluding expectation over the parameters 0, is not a function of the parameters 6. In
such cases the Bayesian predictive deasity is optimal in a frequency sampling sense where there is
a fixed unknown true parameter value and the negative eatropy (2-6) is used as the measure of
error. This topic is discussed in the next section.

e~
e




63

62 Best Invariant Predictive Densities

In several particular cases, the optimal predictive density bas been found that minimizes the
negative eatropy. Murray (1977) coasiders the clas of d-dimensional multivariate normal deasi-
ties N (u,2) with

PO 1.3) = @my*? 3| Viexpl-1(-pF Tl-w) (66)

In this case Aitchison and Dunsmore (1975, p. 29) show that using the noninformative prior den-
sity proportional to | Z| ~!, the Bayesian predictive deasity is the d-dimensional Studeat distribu-
tion

P, 00l x) = St,(n-1,4,(n +1)(n-1)"'8) 67)

where the d-dimensional vector z is Sz,(k ,b c) if it has density function

- T{(k +1)2)
w2 {(k—d +1)2}| ke| P{1+z-bY (ke ) (z-b)Kk +1)2

p(z) (6-8)

This Bayes predictive deansity was shown (Aitchison, 1975) to result in the negative entropy not a
function of the unknown parameter 8,. It is thus also optimal in the frequency sease.
This same result was derived by Murray (1977) using invariance concepts. Counsider the class
G of invariant predictive densities p(y| x) that are invariant to translations and linear transforma- l
tions of the sampie x. In this class, the best invariant predictive density p,(y| x) was shown to be
(6-7) which gives a constant value of the negative entropy independent of the value of the true
parameter value 8.. This gives a strictly frequentist interpretation of the Bayes predictive density.
A stronger result reported very recently (Levy and Perng, 1986) is the minimality the negentropy
for the best invariant predictive deansity p,;(y| x) uniformly in the unknown parameters
0. = (ue,2.) among any predictive density in the class G of invariant predictive deasities.

63 Comparissa of Entrepy for Multivariate Normal

To illustrate the usefulness of the predictive inference approach using negentropy, the
results for the multivariate normal distribution are given below in terms of the relative odds of
the likelihood ratio. Consider the case (66) of the multivariate normal density N,(,2). Here
three methods are compared: the estimasive method using the predictive density
PeO x) = N, (y,ii(x),2(x)) where the maximum likelihood estimates ji(x) and $(x) are used, the
best normal with estimates (ji,(n +1Xn—d-2)"'%) which minimize the negentropy in the class of
oormal densities, and the Bayesian predictive density which is ideatical to the best invariant
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predictive deasity.
JE The expected negentropies are shown in Table 8 for the above three predictive deasities.
.‘l
.;‘
| Predictive " Number of Observations (n)
5
- Densities || ¢ 6 1 14 0 %0
A 1-Dimensional
. Estimative || 1.191 0366 0.130 0.094 0.060 0.021
» (248) (1170)  (1037)  (L121) (1009) (1.001)
4 Best 0476 0226  0.103 0079 0053 0020
Normal (121) (1.048) (1.009) (1.006) (1.002) (1.000)
r
% Best 0282 0.180 0.094 0.083 0.051 0.020
W Invariant
_—— -__“
W 8-Dimeasional
Estimative - - 3687 8.08 285 0.61
i‘: (10¢) (214) (3819) (1.127)
Best - - 619 3.15 163 050
; Normal (893) (156) (1127) (1.010)
)
, Best - - 460 269 151 049
o, Invariant
)
.
")
Table 8. Expected Negative Eatropy (and the Geometric Mean of the Likelihood Odds Relative
¥ ‘ R
to the Best Invariant).
. In comparing two predictive distributions, the relevant quantity is the difference between their
!Q
: negeatropies (2-5) (Larimore (1983a)). The exponeatial of this quantity is the geometric mean of
' the relative odds of a sample y having come from the two respective predictive distributions.
; This exponential of the negentropy difference is also given in parentheses in Table 8 for the best
Vla
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normal and estimative methods relative to the best invariant method. Since exp(a-b) = 1+(a-b)
for a-b<<1, we see that for negentropy differences much less than unity, the odds of an
observed d-dimensional sample y coming from either of two predictive distributions is about
equal. For the negentropy difference near unity, these odds are disproportionate of order e =2.7;
and if it is much greater than unit the odds can get very large. Note that a 20 percent increase in
the negentropy as between the estimative and best invariant for d =1 and #=20 has only a one
percent odds advantage. On the other hand, a 17 percent increase in the negentropy as between
the best normal and best invariant for d =8 and n =14 has an odds ratio of 1.56. This emphasizes
the importance of comparing the negeatropy on the basis of the arithmetic difference and not the
relative proportion. Note that for very small samples the relative odds ratio can be much larger
than unity and even in the tens or hundreds. Thus there is a huge poteatial gain in the use of
predictive inference in very small samples as has been noted in different terms by Aitchison and
Dunsmore (1975, p. 231), Aitchison and Kay (1975) and Murray (1979).

............................
- .

haat et Al

''''''''
L N




T I R T A N LA AN S AT U AT U UL A O W L A LW U LA LA LI LW U U LW L T L) LAY & b ot Vo oghy aty Y

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Coacinsiens From Phass 1 Study

In this Phase I SBIR study, statistical methods are developed using predictive infereace and
entropy. This approach has a strong intuitive appeal as a result of the justification of the entropy
measure based upon the predictive inference framework and the fundamental statistical principles
of sufficiency and repested sampling. This approach applies to a wide class of inference problems
including:

° general inference methods such as parametric or nonpsrametric
methods

] exact evaluation of small sample procedures

e determination of model order or structure including the case of non-
nested multipie comparison
° time series analysis including definition of optimal tracking of time
varying processes and optimal detection of abrupt changes.
The entropy measure provides a fundamental measure for the comparison of alternative statistical
procedures and provides a basis for developing optimal statistical inference methods.

In this study a number of particular topics were addressed from the predictive inference and
eatropy perspective including:
° statistical model building involving the determination of parametric

model structure and order in the general case of constrained multi-
ple nonnested alternatives,

° time series modeling and forecasting involving the determination of
parametric model structure and order,

) adaptive time series analysis involving optimal methods for tracking
slow changes as well as for detecting abrupt changes or failures,

. small sample inference for multivariate distributions of the exponen-
tial family.
Some major results were developed oa these topics that demonstrate the feasibility and desirabil-
ity of developing statistical methods using predictive inference and entropy.

A number of results were obtained for the nonnested multiple comparison problem based
upon the study of constrained maximum likelihood estimates. These include:
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° coasideration of the general coustrained case
) goneral extension of Akaike’s AIC procedure to coanstrained non-
nested multiple comparison problems
° solution of the general constrained case requires that a condition on
the Fisher information and Hessian matrices be satisfied
° a general model order and structure selection method was shown to
be asymptotically optimal.
Previous developments consider only the case where the true parameter is approached asymptoti-
cally and exclude the case where the true parameter lies outside the models considered. The con-
strained cass investigated in this study gives a basis for viewing the predictive inference and
eatropy method as model approximation when the models are restricted and asymptotically
biased. These results provide a basis for the use of predictive inference and entropy on the gen-
eral time series analysis and adaptive time series analysis problems involving constrained non-
nested multipie comparison.

Using currently available methods, the time series analysis problem is difficult because the
parametric model structure is unknown and requires the fitting and comparison of maay different
models. Also current methods are numerically and statistically illcoaditioned for some models.
The approsch of predictive inference and entropy provides a natural solution to the multipie com-
parison problem. The results obtained using the predictive inference and entropy approsch for
multivariate time series analysis include:

° Explicit expressions for a lower bound on the achievable accuracy in
the estimation of the transfer function saad power spectral matrix

° This lower bound applies to the case where the true model order is
unknown and s model order determination procedure is used.

o The lower bound is achieved for large sampies using maximum likel-
ihood estimation and the AIC order determination procedure.
An example of the estimation accuracy of a true ARMA(4,3) process using spectral smoothing,
AR model, and ARMA model fitting show the considerable difference in using these various
methods.

Markov models of time series were developed as a basis for stable time series analysis
methods using the canonical variate method (CVA). This method is numerically and statistically
stable and has been applied recently to a number of high order muitivariable time series analysis
problems. This approach provides the basis for adaptive time series analysis methods.

Markov models of time series with changing characteristics were deveioped including siowly

and abruptly changing processes. Using the CVA method as the computational method, the
entropy methods were applied to adaptive time series analysis:
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° Statistical methods for determining the optimal data length for adap-
tation to slow changes were developed.

° Statistical metbods for choosing the optimal time interval for detec-
tion of an abrupt change in the process were developed.

[ The entropy measure is optimally sensitive to any abrupt changes
including changes in process dynamics, changes in the excitation
noise levels, and jumps in the proces state.
Thess results demonstrats the feasibility of developing adaptive time series analysis methods
based upon eatropy methods and the CVA computations. The CVA computations have been
demounstrated in real time ideatification of multivariable systems. Thus the feasibility of adaptive
time series analysis in real time has been demoanstrated.
Small sample methods were developed using the predictive inference and eatropy methods.
The justification of eatropy based upon the sufficiency and repeated sampling principies provides
a sound justification for the use of recently developed small sample methods based upon entropy.
The Bayesian method was extended to the case where the informative and predictive experiments
are dependent. The theory is illustrated for the muitivariate normal distribution using the Baye-
sian, best invariant, estimative, and best normal predictive densities. The relative measure of
approximation is shown to be the per sample relative odds ratio which is the exponential of the
entropy measure.

72 Recommendations for Further Ressarch and Development

This study has demonstrated the feasibility and usefulness of predictive inference and
eatropy methods particularly in the areas of:

) constrained noanested multiple comparison of models
L) model order and structure determination for time series

° modeling of changing processes using Markov model structures

° optimal adaptation to slowly varying processes by optimal selection
of data interval

° optimal adaptation to abrupt changes of unknown type at unknown
times by optimal selection of the detection data interval

° automatic stable computation of time series models using the CVA
method

° determination of lower bounds for the estimation of transfer func-
tions and power spectrs.
These achicvements provide a bases for the further research and development of predictive infer-
encs and entropy methods.

......
......................
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The areas of greatsst promise appear to be those of adaptive and nonadaptive time series
analysis for the following reasons:

° the number of potential applications to DoD systems is very large

° time series analysis and adaptation are the major problems in adap-
tive coatrol

[ to address the adaptive time series analysis problem requires an
approsch that deals with the multiple comparison problem in a fun-
damental way that is offered by predictive inference and entropy
methods

° among the current time series analysis methods, only the CVA
method is suitable for real time solution of the problem

° present and near future computers are capebie of multivariable iden-
tification in less than a second of computation for high order systems
of dozens of states

These methods have been demonstrated to be feasible, and the development of online adaptive
time series analysis software for general application would provide an enormous capability for
DoD systems. Presently there are no other known approaches that will achieve this goal. Such
adaptive time series processors would allow for the adaptation of systems to siow aad abrupt
changes in the environment.

The topics recommended for further research and development include:

° further research and development on the adaptive time series
analysis methods for adaptation to siow and abrupt changes

° development of algorithms for implementation of the adaptive
methods that are numerically stable and accurate and are statisti-
cally reliable

° prototype algc_nithm tcst_ing to demonst_nte the accuracy, reliability,
and computational requirements on typical DoD problems.

) software development to provide modular, documented, and verified
software in one or more general programming languages.

The achievement of these objectives would provide a dramatic improvement in the performance
of adaptive methods and the availability of software for adaptation in DoD systems.
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APPENDIX A
CONSTRAINED NONNESTED MULTIPLE COMPARISON
USING PREDICTIVE INFERENCE AND ENTROPY
By Wallace E. Larimore
Scientific Systems Inc., Cambridge, Massachusetts, US.A.

SUMMARY
Research Sponsored by the Air Force Office of Scientific Research, Air Force Sys-

tems Command, USAF, under Contract Number F49620-85-C-0086.
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R 1. Intreductien

) The general problem of choosing a model from among a multitude of alternative
" models remains one of the difficult problem of statistical inference. Traditional methods
of statistical hypothesis testing apply directly only to the case where there are two
) hypotheses under consideration and one is a subset of the other, i.e., the two hypotheses
are nested. Ia such cases, classical methods are applicable and lead to well understood
results. In the case were there are more than two hypotheses involved, the use of the
classical methods are not well defined or understood even in the nested case (see for

% example the discussion in Anderson, 1971, pp. 270). Although the probability of rejecting
» one hypothesis in comparing any pair is well defined, the repeated application of such
;'n pairwise comparisons results in a test whose properties are not understood. In the case of

comparing two hypotheses that are not nested, the distribution theory is available but
y much more complicated (Larimore, 1977). '

- Beyond these difficulties in carrying out the classical procedures is the lack of a gen-

eral framework for formulating and solving the problem of nonnested multiple comparison
of constrained models. The predictive inference approach offers a predictive measure of

S the accuracy of various model selection procedures that apply as easily to the case of noa-
N nested multiple comparison. The adequacy of a model selection procedure is measured in
:\: terms of the accuracy of the selected models in hypothetical repeated "future® experi-

ments. This is very attractive in the context of scieatific inference were the role of model

building is to provide a basis for prediction of the future behavior of a phenomenon. The

entropy measure provides a most sensitive measure based upon the sufficient statistic as
o contained in the likelihood ratio. The derivation of the entropy as a measure of the pred-
iction error of a predictive deasity in the predictive inference framework is based upon
the fundamental principles of sufficiency and repeated sampling (Larimore, 1983). This
provides a strong theoretical basis for the use of entropy in predictive settings of scientific
inference. In more narrowly defined problems of quality control or decision theory
involving a well defined loss function, other procedures may be more appropriate. But in
a predictive scientific setting, the approach using predictive inference and entropy seems
much more justified.

-

-

o

Coasider the problem of choosing among a multitude of model structures on the
basis of a set of observations. Uf we adopt the predictive criterion that the chosea model
should be the best in a predictive sense in predicting another independent sampie from
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the same process, then the optimal choice is the mode! selection procedure with the
minimum negeatropy. The major problem is the practical evaluation of the negentropy
measure and the determination of efficient procedures that come close to minimizing the
negentropy measure.

In this paper, the theory of inference for nonnested multiple comparison is
developed in the context of predictive inference and entropy. To develop a general
theory, the case of maximum likelihood is considered for moderate and large samples.
The case where the true process model is not contained in the models considered for
inference is the usual situation in scientific inference since even the most general model
forms usually do not include certain complexities such as nounlinearities, noastationarity,
etc., that may have a small effect or be very difficult to handle. Previous approsches
involving the entropy measure have not explicit included this miss-modeling. It is shown
that this miss-modeling can be directly considered in the analysis. The resulting theory is
very attractive in that is gives an explicit interpretation of the predictive inference
approach as model approximation of the true process using simplified alternative model
forms. The entropy methods lead to procedures that select models that in the predictive
sense are the most accurate in approximating the true process model. The classical diffi-
culties of nonnested and multiple comparison do not arise in this predictive infereace set-
ting.

In the paper, first the subject of constrained maximum likelihood estimation is
developed in the predictive inference and entropy context. This is used to derive the
expected negentropy for maximum likelihood estimates, and then to determine an
unbiased estimate of the entropy. Finally, bounds oan the achievable accuracy of model
selection procedures is derived that depend on the number of estimated parameters in the
model fitting.

2. Coustrained Maxzimam Likedihood Estimation

In this section, properties of the maximum likelihood parameter estimates are
developed for the case that the true probability model is not contained in the class of
parameterized densities that are coasidered for infereace. The classical development of
the asymptotic consistency and minimum variance of maximum likelihood estimators is
for the case where the true deansity is contained in the parametric class.
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The predictive inference framework as in Larimore (1983) is adopted here with
p(x,0) the parameterized probability density where 0 is a vector of parameters, x is the
informative sample and y is the predictive sample. Suppose that the parameter vector
o7 =(9,,6,,...) is a finite or infinite set of parameters, and for each subset of distinct posi-
tive integers k =(k,, . . . .k, ) coasider the subspace 6, of 0 such that only the correspond-
ing O, ....8 are nonzero where o deootes a member of ©,, and let C, be the the

class of models C, ={p(x,0"),6* €8,}. These classes of models are in general nonnested so
that we do not in general have C,CC, or C,CC,. The maximum likelihood estimator for
the class C, will be denoted as & (x).

The development of the maximum likelihood theory is straight forward for the case
where Taylor series expansions are possible. This holds under the following regularity
conditions (Cox and Hinkley, p. 281):

(i) The parameter space is closed and compact.

(ii) The probability distributions defined by any two different values of 8 are distinct.

(iii) The first three derivatives of the log likelihood /(x,8) with respect to 0 exists in the
neighborhood of the true parameter value almost surely. Further, in such a neigh-
borhood, n~! times the absolute value of the third derivative is bounded above by a
function of x, whose expectation exists.

In particular, these conditions permit the interchange of expectation and differentiation

up to second order.

In the discussion various order models are considered, and the relationships
between the various orders is developed. The log likelihood function of the informative
sample x will be denoted by /(x,8), and the gradient row vector and Hessian matrix
denoted !’(x,8) and /"(x,0) respectively. Expectation , denoted E, will be with respect to
the true density p(x,8) unless stated otherwise where & denotes the true parameter value.
Define the projection & of 6 onzo ©, as the parameters ¢ ¢8, minimizing the negentropy
R, relative to the informative sample x

R.(8,6") = El(x,0) - El(x ¢") (2-1)

At the minimum &, the gradient of (2-1) is zero so from the regularity conditions

El'(x,8*) =0, 2-2)
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and the minimum is unique if and only if the expected Hessian, deaoted D}, of (2-1) is
positive definite in an opea neighborhood of the minimum. From the regularity condi-
tions, the Hessian is given by DY=El"(x ,&*).

To determine the moments of the maximum likelihood estimates &, consider the
L first order equality

0 =1'(x,8*) = 1"(x,8") + (") 1"(x 8*) 2-3)
Taking expectation with respect to the the true density and using (2-2) gives the equation
DXE® o) =0 (2<4)

that holds asymptotically for large informative sample N. For @' identifiable, i.e. 8*
unique, D! is nonsingular which implies that to first order
o E¢t =& (2-5)

, Now using (2-3), the covariance of the estimation error is

Lo oL

. E@-# )& - = OH'EUT(x, 8N (x,6 DN (26)

Note that in the unconstrained case, the middle term which is the Fisher information
" matrix is equal to minus the expected Hessian D%, but this is not in general true for the
constrained case.

3. Expected Negative Entropy for Maximum Likelihoo Estimates

To evaluate the expected negative entropy for maximum likelihood estimates, con-
sider the predictive inference setup as in Larimore (1983). The general case of depen-
dence between the informative and predictive samples is considered. The expected nega-
tive entropy is a measure of the degree of approximation of the true conditional density
p(y| x,8) by the predictive density p(y| x,8*) for predicting the future predictive sample y
from the informative sample x. The expectation will be taken in two steps, first with
respect to the random variable y| x and then with respect to x. In this section the likeli-
hood function I(#*) = /(y| x,8*(x)) is for the predictive sample y| x, and the maximum
likelihood estimator & (x) is on the informative sample x.

- p S Gl S
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= Expanding (2-1) in a Taylor series gives a second order expression for the informa-
K's tion distance which holds asymptotically for large sample size of the informative sample,

~

e aaeae e acmemeana- e e e, e
L ", o v, o
Y L y




A-5

i.e. for the maximum likelihood estimate & close to the projection 6*

Ry (8.8 (x)) = E[L(®") - 1(8)] + E[I(B) - 1(8)]
= B @XE - ) - E[S@ - BV @) - )] + EU@E) - 160

- -%E, I8 )-8* 1|2 + Ry, (8.8 (1)

- r . K

since & (x) is independent of /(y| x,8*) and using the gradient property of the projection
' (2-2). The second order expansion is oaly locally in the estimation error # -8 about the

projection & of the true parameter value 6 on the subspace of the parameters correspond-
! ing to the model 6*. Note that this expression gives the exact bias term R, ,(6,8*) in small
samples and involves no approximation.

) 4. Unbiased Estimation of Eatropy

! For decision on model parametric order and structure, it is necessary to estimate
the negative entropy based on the informative sample. One such procedure is due to
Akaike (1973). We consider the case where the informative sample x and the predictive
sample y are independent. For each selection of a parameter subset k =(k, . . . .,k,), the
Akaike information criterion for comparing the maximum likelihood estimators is

AIC (k) = -2logp(x,8*(x)) + 2K (k) (4-1)

) where K (k) is the number of parameters, i.e. the dimension of 8. The minimum AIC
estimator (MAICE), denoted 8,(x), is 8,(x)=6“)(x) where £(x) is the parameter set
minimizing A/C(k). The AIC(k) is an unbiased estimator of the negative entropy based

] upon the informative sample and the assumed model structure. The predictive sample is

ementially replaced by the informative sample, and the term 2K (k) is an adjustment for

the bias due to the correlation between the informative sample x and the estimate & (x).

Following Akaike, we use the maximized log likelihood /,(#*) = {(x,8*(x)) as an
estimate of the relative entropy and compute the bias in the procedure. We expand the
log likelihood function as in (3-1) except that below the likelihood is on the informative

sample 0 that there is dependence between /(x,8*) and & (x). In particular, using (2-3)
gives
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-E[I'(#X0* - &) = E[(& - &Y 1@ X - &) (4-2)

Consider expanding the expected log likelihood difference as in (3-1) but using (4-2) as a
result of the dependence. Thus

E(1(8) - 1(8)] = E[L(&*) - 1(8")]) + E[1(8) - 1(8"))
= EWENE - #)]- E[@ - #Y @)W - )+ E06) - (@)
=E[(&* - &)Y 1”@ Xe* - )] + R(8,8")
= —tr(DDYE(UT (2,08 )M (x %)} + R(8,8*) 4-3)

where the third equality follows using the expression (3-1) for the expected negentropy.
In the general case, the bias term in the negentropy, R(8,8*), is correctly estimated except
for the trace term. Asymptotically, if @ approaches 6, then the matrix of the trace is the
identity. This is the case considered by Akaike (1973). In the general constrained case,
this may not be the case so that the bias depends upon the unknown true parameter value.
What is required is a restriction such as the Hessian and Fisher information matrix being
equal giobally which gives

~tr(DFY'EUT (x,04 M (x,0*)} = erlgyy = K (k) (44)

Consider the case of fitting two models & and &, and consider the expected differ-
ence of the maximized log likelihoods

E[1(@®)- 1)) = EI®) - 1(¥)] - E[(®) - 1(3)]
= + dim(8*) - dim(0/) + R(9,8/) - R(6,8*) 4-5)

Thus for relative comparisons among hypotheses based on a given sample, an unbiased
estimate of twice the negentropy E(/(8) - /(8*)] is given by the Akaike information cri-
terion. Note that the proof of this is much more general than that originally given by
Akaike (1973) since it applies to the general case of comparisons of nonnested structures.
Also, the true parameter  need not be contained in the structures being compared so
long as the Fisher information matrix is a constant in a neighborhood including the true
parameter and its projection onto the subspaces of these structures.
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S. Bounds ea the Accuracy of Modd Selection

To obtain a correction for the bias in the sample log likelihood as an estimate of the
eatropy measure, the Fisher information must be coastant or other restrictions are
required. In this section the Fisher information is assumed to be coastant in a neighbor-
hood of the true parameter & containing the projection . Under these conditions a
lower bound on the eatropy measure is derived. From the above relationships and stan-
dard arguments of asymptotic consistency, it follows (Cox and Hinkley, 1974, p. 292) that
the constrained maximum likelihood estimate & is consistent and the limit in probability
is . In addition the properties of the unconstrained maximum likelihood tracslate to the
projection & since the Fisher information matrix is constant.

Consider first the case of estimating the model & using the k-th order maximum
likelihood estimator &. Then from (3-1)

R@,8) = ‘71” DEE((@-# XY} + RG) = %’-‘l + R(G.P) (1)

where the inequality follows from the Cramer-Rao lower bound
E,[(@-8)T (-D*X8*-#)) = rig,yN = K(KYN where K(k) is the number of parameters
estimated in the model & and N is the sample size. The last term in (5-1) is the bias in
using too low an order in the model fitting, and the first term is the sampling variability
apart from the bias. This bound K'(kY2N on the variability is achieved for an asymptoti-
cally unbiased and efficient estimator for the class C, such as maximum likelihood. In
particular, if the true model order is no greater than k, then

Lim N[R@®#) - RG.#)] = 5 (52)

The true order k of the process is usually not known and may in fact be infinite, and the
bias term in (5-1) is not known so that the above discussion is not very useful in practice
aithough it doss give some insight into the accuracy issue.

Cousider now the Akaike MAICE procedure using the estimator 8,. Assume that
the true model order is infinite, so that for any j there exists a j=j such that 8,>0.
Define the optimal predictive order k° (N ) depending upon the sample size N as the order
k minimizing the negentropy (5-1). Then under suitable assumptions, the remarkable
result is obtained by Shibata (1981a, 1981b, 1983) that asymptotically as N -

f oSl Tt Sof
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(i) the lower bound using any order selection scheme is for each N given by evaluating
(5-1) at k =t°(N), and

(i) this lower bound is achieved by the MAICE estimator 6, .

52 ST AL E

Thus the lower bound on the negeatropy which is achieved by MAICE is equal to the
negentropy that would result from using an efficient estimator with apriori knowledge of
the optimal order k*(N).
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APPENDIX B
ACHIEVABLE ACCURACY IN PARAMETRIC
ESTIMATION OF MULTIVARIATE SPECTRA
By Wallace E. Larimore

Scientific Systems Inc., Cambridge, Massachusetts, US.A.
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1. INTRODUCTION

IREA

The problem of determining the achievable accuracy in ideatifying a model for a station-
ary multiple time series is considered in this paper. The cases of the presence or absense of an
exogeneous input or additive measurement noise are included. Consider the general case where
x(2) is the exogeneous input and y(r) is the observed endogeneous output of a system which may
4 include other unknown excitations and measurment noise. Thus consider the jointly stationary
gaussian vector time series x(¢r) and y(¢),r=..,-1,0,1,.., with power cross-spectral matricies
5 5:(0,8), S,y (w,0), S, (w,0) parameterized by 8, and denote the power cross-spectral matrix of the
joint vector (xT(¢), y7 (1)) as S(,0) .

s e

LR N

Statistical inference is considered on a class of linear Gaussian processes parameterized by

8. Specifying a parametric model for the conditional process y(t), r=s given x(t), t<s implies a
causal linear model of the form

y(6) = q(t) + Sh@-r0)k() = q() + r(z) )
0

A

where A(z;0) is a causal linear system giving the response r(¢) in y(s) due to the past exogeneous
input x(¢r) and where g(¢) is the error in predicting y(t) by r(t). From linear prediction theory
- (Gikhman and Skorokhod, 1969), the transfer function of A(t:8) is H (w:8)=Sy(w,0)5}(w,0), and
" the error ¢(¢) in predicting y() is uncorrelated with r(z) with power spectrum S (w;8)=S,,(w,v)
- H(w,8)S, (,0) *(w,8). Note that any class of parameterized models S (w,8) can be equivalently
specified by the parameterized models (S (»,8), / (»,8)) which will prove more convienent.

NN
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2. ENTROPY AND SPECTRAL ACCURACY

Consider the following predictive inference setting (Larimore, 1983) involving an observed
informative sample u” =(x7 (1)yT (1),..xT(N),yT (N)) of size N used to estimate the process model,
and similarly consider a conceptual predictive sample v of size M used to evaluate the accuracy of
the estimated model. The predictive sample is assumed to be identically distributed but indepen-
dent of the informative sample. Consider the problem of inference on the parametric class
. {p(v,0),0€8} of models with probability densities p(v,0) based upon the informative sample u .
. Consider the conceptual repeated sampling experiment where on each trial the samples « and v
'\ are each drawn independently from the process S (w,8.) with 8. assumed to be the true parameter

value. An estimative model p =p(v,8(u)) is chosen for the deasity of v by some parameter estima-
p tion scheme &(u) . The negative entropy, also known as the expected Kullback-Leibler discrimina-
tion information or expected I-divergence, is a measure .“ the error in approximating the true
deasity p. of v by the estimate 5 and is given by
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RGed) = EK(pd) = E, [ PO 80) log-2rs 4, -
PO )

where E, denotes expectation relative to u and K denotes the Kullback-Leibler information. The
negative entropy measure follows as the natural measure in the predictive inference setting from
the fundamental principles of sufficiency and repeated sampling (Larimore, 1983). This
approach applies to very general modeling methods such as nonparametric, semiparametric or
parametric procedures as well as methods including decisions on model structure or order such as
those used for AR and ARMA modeling.

Let lower case variables denote a sample of size M of the predictive sample, eg.
y=0T ()" (2),...0" (M) and 3, denote the covariance matrix of y. By expressing the density
p(yx:0) = p(y-r;8) p(x;0) in terms of the conditional random process g(¢) = y(¢)-r(z),

P(x.0) =p(y|x.08)p(x.8) = p(y - r(x,8),8) p(x.8) = p(q| r(x,8),8) p(x,8) &)

the log likelihood separates with the density of x(¢) in many problems not a function of the unk-
nown parameters or at least a function of a separate set of parameters. A conditional viewpoint
is taken in the following where only the conditional term p(q| r(r,6),8) with x considered as non-
random is considered. The depencence of r on x will be understood in the notation. Inclusion of
the second term is tantamount to modeling the joint vector time series involving the two series
x(¢) and y(¢) jointly rather than as exogeneous and endogeneous respectively. The joint case is
included as a special case of y” (1) = (" (1),x7(¢)) a vector process with no input x(s) which will
be discussed as a particular instance of the model throughout the paper. The I-divergence (2) con-
ditional on x thus becomes

N plql=8) )
K@.5) = [ plql x.0.) los—p P dq = Elogp(y-r..3 ) - Elogp(y-#.2,,)

= Elogp(y—re,2,) - Elogp((y-re)+r.—),2,,)

= Elogp(y—r..3,,) - Elogp((y-re).2g) - E(re—7#)Y £ 1(re-#) @)

where 7 = r(x,8), ro =r(x,8.), and where E denotes expectation with respect to the density
p(yl x,0.).

For brevity set S denote the true spectrum, and let S denote an estimate of S. We will
need to assume that S(w) is continuous and that Seg(w) and S (w) are positive definite for
w€[-m,7] . In the discussion, the predicuve sample v will be considered to be conditional on x(¢)
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and to have an infinite sample size M. This will require the normalization of the negative
entropy and I-divergence by the sample size M. The l-divergence per sample time conditional on
(1), which will be deaoted /(S .S) and called / -divergence for brevity, can be expressed using (4)
as (Kazakos and Papentouni-Kazakos, 1980)

165 5) = im 2 K (B (v 8:)0 (v 8 )

T % [ iog] S (@)Sgq ') + 1rll - s..ms‘.."(«»m;—:

-

2 [riSe 1 (0) - A (@S (o @) - A 152 ¥

where the subscript emphasizes that the sample of size M of v becomes infinite. The negative
entropy per sample, or segentropy for brevity, is defined as N (S ,S):h‘m%k(p.j) =EI(S ..f).

Note that the I-divergence is composed of two terms, the last due to the error in estimating the
transfer function H (w) and the first due to the error in estimating the spectrum S, (w) of the

noise ¢(1). A useful approximation for the first term in (5) is

-3 [ og] S (X" + 1l - Sw@)p @D 52

= L SN (@) - S (@ T2 ©

which holds to second order in the elemeats of S, as is easily shown by comparing first and
second derivatives of the integrands. This is a generalization to the multivariate case of the
integral of the squared relative error. Thus the I-divergence is approximately a quadratic form in
the estimation errors of S, (@) and H (w), and these quadratic forms do not interact, i.e. there

are no Croes terms.

3. NORMALIZED SPECTRAL ERROR IN PRINCIPAL COMPONENTS

In the multple time series case, the spectral measure (S) has an intuitive interpretation in
terms of principm components of the power spectrum in the frequeacy domain. Principal com-
ponent representations of the spectral matricies S, (w) and S, (w) have the form

J (@) Spq(w) /" (w) = D(w) , L(w)Sg(w)L () = E(w)

................................................................
...............................................................

-----
""""""""""
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------------------------
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where J(w) and L(w) given as a function of frequency w are unitary matrix transformations which
diagonalias S, (w) and S, (w) respectively so that J (@Y (W) =7 = L(w) (w), and where D(w)
and E(w) are diagonal matricies.

Using spectral factorization theory, the matrix function J(w) can be chosen as a continu-
ous function of w and the transfer function of a causal filter under either of the mild assumptions
(i) The process is purely nondeterministic ((Gikhman and Skorokhod (1969), Whittle(1954) for

the scalar random field case).

(i) The autocovariance function is absolute summable (Goodman and Ekstrom (1980) for the
scalar random field case).

These derivations of the spectral factorization for the scalar case generalize to the multivariable
case with care given to determining the logarithm of a matrix (Larimore, 1984, 1977). Orthonor-
malization of the rows of the spectral factor gives J(w) while the normalizing terms form the diag-
onal of D(w) . Similarly, L (w) can be taken as a spectral factor of a causal filter.

Let X(w) be the random Fourier coefficients of x(t), i.c. the spectral random measure of
x(¢) . Filtering x(¢) with traasfer function L (w) gives the principal component process x(r) which
is expressed in the frequency domain as X (w) = L(w)X (w) , and which has the diagonal spectral
matrix £ (w) and similarly for ¢(¢).

Now consider the asymptotically equivalent expression (6) for the first term of the spectral
measure (5) which is invariaat to the unitary transformation J () and is thus given by

[0 B - D@ 5E

1o FDu@-Dy@ de 1 |By@)i® dw
4 ? !.[ Dy(w) Fer *2 i=1 ~« Du(@)D); () 4m
1 % Dy(w) - Dy(w) | D, (w)| ?
=< : 8
DY [y TR F RS ,z, !.o.(«»)o,,(«») o ®

where the approximation holds for the diagonal elements of D(w) near D(w) . The approximation
is very useful when only the estimated spectrum S, (w) is known and we wish to coasider the
error in estimating the truth Seq(w) . The first sum on the right hand side is the integrated
squared relative error of the estimated cospectra of the principal components, while the secoad
term is the integrated squared coherency of the estimated spectrum D(w) which would be zero if
D(w)=D(w) . Thus the first term of the measure (5) has a clear interpretation in the multivariate
case whea the true spectrum D(w) is diagonal but where the approximating spectrum D(w) is

»
[
E
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permitted

arbitrary coherency among components. The general case is reduced to this diagonal case by

choosing an appropriate filter / (w) which diagonalizes S, (w) as in (7). .
The second term in the spectral measure (5) is invariant to the unitary transformatioas
J (w) and L (w) which gives
- 3 JriD (NG w) - G@E@IG() - ) 152 :
d :
-5 -{Bl Gu("') Gu("’)l 25" 2: &)

where G(w)=J (w)H (w)L°(w) is the transfer function H (w) expressed in the coordinate frame of
the principal component series £(¢) and y(1). The squared magnitude error | G, (w) - G (w)| 2 in
the ij element of the transfer function is weighted by the input signal to output noise ratio
Dy E,; for the pair ij.

vy T sy s

4. A LOWER BOUND ON ACHIEVABLE SPECTRAL ACCURACY

A lower bound on the expected negative entropy gives an asymptotic lower bound on the
achievable accuracy in the estimation of the process spectrum and transfer function. This applies
to the case of a fixed known model order as well as to the case of an unknown or infinite model
order with the use of the AIC for model order selection. The achievable spectral accuracy is
given as a function of the sample size and the number of parameters estimated.

Consider the case where the model § is estimated using a X dimeasional constrained estima-

™

tor . As derived in Larimore (1986) using the Cramer-Rao lower bound, the expected negen- N

tropy is asymptotically bounded by N
E IS8 = e +EISS) (10)

where S is the model to which the constrained maximum likelihood estimate converges so that
E,I(S S) is the bias in the constrained model and K/2N is the sampling variability. i

The bound K/2N is achieved for an asymptotically unbiased and efficient estimator such as
maximum likelihood. In particular, this assumes that the true model order is no greater than the 3
order X used in the model fitting. The true order X of the process is usually not known and may

Ci
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infact be infinite, so that the above discussion is not very useful in practice although it does give
some insight into the accuracy issue.

Consider now the Akaike minimum AIC procedure (MAICE) using the estimator 8,
(Akaike, 1973). Assume that the true model order is infinite, so that for any subset of the infinite
parameter vector, there exist nonzero components. Thus it is not possible to obtain asymptotically
unbiased estimates of @ using a fixed model order in estimating a model. Following Shibata
(1983, 1981a, 1981b), define the optimal predictive order K*(N) depending upon the sample size
N as the order K minimizing the aegeatropy (10). Then under suitable assumptions, the remark-
able result is obtained by Shibata (1981) that asymptotically as N =

' (i) the lower bound using any order selection scheme is given by evaluating (10) at XK =K, and
(ii) this lower bound is achieved by the MAICE estimator 6.
Thus the lower bound on the negeatopy which is achieved by MAICE is equal to the negentropy
that would result from using an efficient estimator with apriori knowledge of the optimal order
K'(N).
Using the spectral expression (5), an asymptotic lower bound on the expectation of the gen-
eralized relative squared error in estimating the power spectrum is given by
K'(N ) (S d
LD < 2 6, [ris @)@ - S22
1 . % . . . d
+ 3 By [riSog 'IH (@) - H(o)Sa @) (@) - H @I} 5 (11)
-
This gives a fundamental limit to the achievable accuracy in any parametric estimation pro-
b

cedure. A further perspective on this fact is given by the justification of the expected negentropy
as the natural measure of modeling approximation error in statistical inference.

Akaike, H., (1973). "Information theory and an exteasion of the maximum likelihood principle.”
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